Linear Congruential Generator

* Goal: Generate Un uniform in the interval [0,1)

* Generate Xnin [0,m), Un = Xn/m

 Xn+1l = (a*Xn + ¢)%m — Linear congruential series
* Four constants required

* XO (starting value/seed), a (multiplier), ¢ (increment/bias),m
(modulus)

e XO=a=c=7,m=10willgive 7,6,9,0, 7,6, 9,0, ...

- Four magic numbers required:



Linear Congruential Generator 2

 Xn+1 =(65539*Xn)%pow(2,31)

* This is essentially RANDU, most popular generator for many
years
— Multiplicative congruential method (Lehman's original method)
- Mixed congruential method C !'=0

* For the math (number theory):
http://www.math.cornell.edu/~mec/Winter2009/Luo/Linear
%20Congruential%20Generator/linear%20congruential%20genl.html



Code for linear congruential generator

#include <iostream>
#include <cmath>

double GetUniform()

{
Static int X0 =12345, m=0, Xn=0;

m = pow(2,31);

Xn=XO0;

Xn = (65539*Xn)%m;

return (double)Xn/(double)m;
}

int main(){
std::cout<<GetUniform()<<std::endl;

return O;

}



Marsaglia

 Search

c en.wikipedia.org/v

“J-- T
: f W !
5L € |
: i
E 5

2 4

L

L

WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article

Donate to Wikipedia

 |nteraction
Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia

b Toolbox
¥ Printfexport

w Languages
Deutsch
Kreyol ayisyen
Tarkge

Aricle  Talk

random number gens X

E Ved Kumari — Global x

E} Simple Random Mum X / \X/ George Marsaglia - W X professional jealousy « %

< Jennifer Crusie | Gre

x o D

Jennifer Crusie | Green Is Mot Your Color: Professional Jealousy and the Professional Writer |

Read Edit

George Marsaglia

From Wikipedia, the free encyclopedia

George Marsaglia (March 12, 1924 — February 15, 2011)l"l was an American mathematician and computer scientist. He established the lattice
structure of linear congruential generators in the paper "Random numbers fall mainly in the planes” ! This phenomenon is sometimes called the
Marsaglia effect, and means that n-tuples with coordinates obtained from consecutive use of the generator will lie on a small number of equally spaced
hyperplanes in n-dimensional space [l He also developed the so-called "dishard tests”, a series of tests to determine whather or not a sequence of
numbers have the statistical properties that could be expected from a random sequence. In 1995 he published a CD-ROM of random numbers which
included the diehard tests [¥]

He is also known for developing some of the most commonly used methods for generating random numbers and using them to produce random
samples from various distributions. Some of the most widely used being the multiply-with-carry, subtract-with-borrow, Xorshift, KISS and Mother
methods for random numbers, and the ziggurat algorithm for generating normally or other unimodally distributed random variables

He was Professor Emeritus of Pure and Applied Mathematics and Computer Science at Washington State University and Professor Emeritus of
Statistics at Florida State University

Marsaglia died of a heart attack on February 15, 2011, in Tallahasses
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George Marsaglia

Born
Died

Nationality
Fields
Institutions

Alma mater

Doctoral
advisor

March 12, 1924
February 15, 2011 (aged 88)

Tallahassee, Florida

American
Mathematics

Florida State University
Washington State University

Ohie State University

Henry Mann

[edit]

Marsaglia had one son, John, with his first wife, Lee Ann Marsaglia. Until his death he was married to Doris Marsaglia. He had two grandchildren, Chris and Nicole Marsaglia, through their son

John and his wife Michelle

See also

s Linear congruential generator
o Narsaglia polar method
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RANDOM NUMBERS FALL MAINLY IN THE PLANES

BY GEORGE MARSAGLIA

MATHEMATICS RESEARCH LABORATORY, BOEING SCIENTIFIC RESEARCH LABORATORIES,
SEATTLE, WASHINGTON

Communicated by G. S. Schairer, June 24, 1968

Virtually all the world’s computer centers use an arithmetic procedure for
generating random numbers. The most common of these is the multiplicative
congruential generator first suggested by D. H. Lehmer. In this method, one
merely multiplies the current random integer I by a constant multiplier K and
keeps the remainder after overflow:

newl = K X old I modulo M.

The apparently haphazard way in which successive multiplications by a large
integer K produce remainders after overflow makes the resulting numbers work
surprisingly well for many Monte Carlo problems. Scores of papers have re-
ported favorably on cycle length and statistical properties of such generators.
The purpose of this note is to point out that all multiplicative congruential
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The purpose of this note is to point out that all multiplicative congruential
random number generators have a defect—a defect that makes them unsuit-
able for many Monte Carlo problems and that cannot be removed by ad-
justing the starting value, multiplier, or modulus. The problem lies in the
““crystalline” nature of multiplicative generators—if n-tuples (uy,us,. . .,u,),
(u2,%3, . . ., Unt1),. .. Of uniform variates produced by the generator are viewed
as points in the unit cube of n dimensions, then all the points will be found
to lie in a relatively small number of parallel hyperplanes. Furthermore, there
are many systems of parallel hyperplanes which contain all of the points; the
points are about as randomly spaced in the unit n-cube as the atoms in a perfect
crystal at absolute zero.

One can readily think of Monte Carlo problems where such regularity in
‘“random” points in n-space would be unsatisfactory; more disturbing is the
possibility that for the past 20 years such regularity might have produced bad,
but unrecognized, results in Monte Carlo studies which have used multiplicative
generators.



Multiply with carry

uint GetUint()
{
m z =36969 * (m_z & 65535) + (m_z >> 16);

m_w =18000* (m_w & 65535) + (m_w >>
16);

return (m_z << 16) + m_w;



Test of randomness

* Diehard tests (Marsaglia 1995)

* Birthday spacings, parking lot test, the craps
test, monkey tests (based on infinite monkey
theorem), count the 1's,...

* See
eg:http://en.wikipedia.org/wiki/Diehard_tests
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Other distributions from uniform variate

* Uniform random numbers can be used to
generate other distributions

* Let X be uniform in (0.,1.), we want a new
random number a in (al,a2) distributed as g(a)

* Conservation of probabillity:
g(a)da = f(x)dx; f(x) = 1.
g(a) = |dx/da]
* |If g(a) is desired to be exponential then:

* (1/D)*exp(-a/D) = |dx/da] (D = const parameter)



Acceptance—rejection method

* Due to Von Neumann

(1) Generate arandom number z, uniformly distributed between zmin and max,
1.6. £ = Tpmin + 71(Tmax — £min) Where r1 1s uniformly distributed between 0
and 1.

(2) Generate a second independent random number u uniformly distributed
between 0 and fmax, 1.€. % = 72 fmax.

(3) If u < f(x), then accept z. If not, reject = and repeat.



Gaussian random numbers

histogram of standard normal randem numbers using accept-reject

histogram of standard normal random numbers using box-muller

_ hgaus2
B Entries 50063 _ hgaus
2000 __ Mean 0.003307 C Entries 200000
N RMS 0.9984 4500 Mean 0.007038
1800 - RMS 1405
C 4000
1600— C
C 35001
1400 C
1200F- 3000
10003— 2500
8001 20001~
600 1500
4001 1000
200 -
00: 500
D_I 111 | [ | 111 | L1l | L1l | [ | 111 Ll | L1 11 r
- '4 '3 '2 '1 D 1 2 3 4 5 D_ II|IIII|IIII|IIII||III||III|IIII|IIII|IIII|II

5 4 3 -2 - 0 1 2 3 4 5



O
O
L
G
&
&
-
AC
=
&
x
O
an

A NOTE ON THE GENERATION OF RANDOM NORMAL
DEVIATES'

By G. E. P. Box aAnp MervIN E. MULLER
Princeton Unaversity

1. Introduction. Sampling experiments often require the generation of large
numbers of random normal deviates. When an electronic computer is used it is
desirable to arrange for the generation of such normal deviates within the ma-
chine itself rather than to rely on tables. Pseudo random numbers can be gener-
ated by a variety of methods within- the machine and the purpose of this note is
to give what is believed to be a new method for generating normal deviates from
independent random numbers. This approach can be used on small as well as
large scale computers. A detailed comparison of the utility of this approach with
other known methods (such as: (1) the inverse Gaussian funection of the uniform
deviates, (2) Teichroew’s approach, (3) a rational approximation such as that
developed by Hastings, (4) the sum of a fixed number of uniform deviates and
(5) rejection-type approach), has been made elsewhere [1] by one of the authors
(M.M.). It is shown that the present approach not only gives higher accuracy
than previous methods but also compares in speed very favourably with other
methods.

2. Method. The following approach may be used to generate a pair of random
deviates from the same normal distribution starting from a pair of random num-
bers.

Method: Let Uy, U, be independent random variables from the same rectan-
gular density function on the interval (0, 1). Consider the random variables:

X, = (=2 log, U)"* cos 27U,

(1)
Xg = (""2 IOge U1)1!2 sin 2‘.!I'U2

Received October 30, 1957; revised January 31, 1958.

1 Prepared in connection with research sponsored by the Office of Ordnance Research,
U. S. Army; Statistical Techniques Research Group, Princeton University, Contract No.
DA 36-034-ORD 2297.




Then (X;, X,) will be a pair of independent random variables from the same
normal distribution with mean zero, and unit variance.

Justification: From (1) (giving attention to principal values), one obtains
at once the inverse relationships:

U, = o —(Xi + X3)-

2
U, = —2117; arctan )XTT
It follows that the joint density of X;, X, is L An n als Of
1 —(X+ X)) 1 —Xi 1 .

f(XJ., Xz) =

T TRt vz~ mathematical

thus the desired conclusions, including the independence of X; and X is obtained. - -
The above approach is motivated by the following considerations: the prob- Statl Stl CS y VOI .
ability density of f(X,, X,) is constant on circles, so © = arctan X,/X, is uni-
formly distributed (0, 27). Further, the square of the length of the radius vector 2 9 1 9 5 8
7 = X; + X; has a Chi-squared distribution with two degrees of freedom. If 1
U has a rectangular density on (0, 1) then —2 log, U has a Chi-squared dis-
tribution with two degrees of freedom. Proceeding in the reverse order we arrive
at (1).

3. Generalizations and other random variables. Observations from the
Chi-squared distribution with 2k degrees of freedom can of course be generated
by adding together the k terms, Y sui (—2 log. U;) and for Chi-squared with
2k + 1 degrees of freedom one may add the square of a normal deviate gener-
ated by the above method. Deviates from the F-distribution and for the ¢-dis-
tribution are obtained by calculating the appropriate ratio of deviates generated
as above. From independent random normal deviates well known methods can
of course be used to generate n-dimensional normal deviates with arbitrary
means and variance-covariance matrix.
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4. Convenience and accuracy. The method suggested here grew out of the
desire to have a way of generatipg normal deviates which would be reliable in
the tails of the distribution. Since most computing centers have library programs
to compute values of trigonometric functions, logarithms, and square roots this
approach requires little additional machine program writing. The accuracy ob-
tained depends essentially on the precision of the available library programs,
whereas that of other methods cannot readily be increased.




Usfulness of randomness

* What Is the probability of getting two sixes in 10
throws of a fair dice?

 Example code dicethrow



Random to estimate not random

The earliest values of T were experimentally measured. In the
Egyptian Rhind Papyrus, which is dated about 1650 BC, there is good
evidence for 4 x (8/9)2 = 3.16 as a value for .

A little known verse of the Bible reads

And he made a molten sea, ten cubits from the one brim to the
other: it was round all about, and his height was five cubits: and a line
of thirty cubits did compass it about. (I Kings 7, 23)

It occurs in a list of specifications for the great temple of Solomon,
built around 950 BC, it gives 11 = 3. Egyptian and Mesopotamian
values of 25/8 = 3.125 and V10 = 3.162 have been traced to much
earlier dates.

The first theoretical calculation seems to have been carried out by
Archimedes of Syracuse (287-212 BC). He obtained the
approximation 223/71 < 11 < 22/7.

m/4=1-1/3+1/5-1/7+ .... Lelbinitz (1646-1716)

To read on...
http://www-history.mcs.st-and.ac.uk/HistTopics/Pi_through_the ages.html



Estimate of pi

histogram of estimated value of pi

histogram of estimated value of pi
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Measurements and errors

* One can use random numbers for difficult
multidimentional integration

 What we will get is an estimate of the integral

— There will be error
- How confident are we In the answer?

- What can we say about the true value, given an
estimate



Imulating the alconoliC (1d ranaom

walk)

Bernoulli process: A Bernoulli trial is an experiment with
two and only two possible outcomes. A random variable X
has a Bernoulli (p) distribution if

X =1 with probability p O<=p <=1
= 0 with probability 1-p,

Let the n-th step of alcoholic be Xn, Xn is Bernoulli(p=0.5)
distributed

 Letdn =1 or -1 for step to right or left

e Dn=sum (di),i=1ton

* Dn =r -l (r = total number of steps to right/left)

=2r-n
Ref. Casella, Berger, Statistical Inference, 2nd ed.



Pascal's triangle

The Symmetric Random Walk

n\z |5 |4-3]-2|-1|]0 123 |4]5
0 1

1 31013

2 1o 204

3 1o 2]0]2]0]%

4 LIo || 0|Z]0]&]0]+%

5 LS00 (8oL lo|Z]0]4

Source: Random walk for
dummies, Richard Monte



Bootstrapping and jackknife

e Estimate the variance of an estimator from the data
itself

* Non parametric method
* Suppose you have n data entries

* Make another dataset by drawing n times from the
data with replacement --> you have got another
sample made from the date : the bootstrap sample

* Estimate the statistic again. Keep repeating k times
* This will give you k values of the statistic

* From this you can now calculate the variance of the
statistic

* D-delete jackknife is a variation of this procedure.
Ref: Effron and Tibshirani



Try at home

* Generate binomial distribution on computer

e Check its poisson and normal limits

* Pseudo experiment: linear fit with computer
generated data of resistance vs. temperature.
Estimate slope and intercept by chi-square
minimization.

* Find the distribution of the estimated slope and
Intercept



Monte Carlo method: basic theorem

Taken from: numerical recipes in C

Suppose that we pick N random points, uniformly distributed in a multidimen-

sional volume V. Call them x,...,xn. Then the basic theorem of Monte Carlo

integration estimates the integral of a function f over the multidimensional volume.

[ pon 2
f FAV =V {f) +V V‘“ ) N f) (7.6.1)
Here the angle brackets denote taking the arithmetic mean over the NV sample points.
1 & 1L
(=52 @) (=5 ) (7.6.2)
i— i=1

* There is no guarantee that error is Gaussian distributed, so the
estimated error is only approximate



An example integration

e \WWe want to evaluate mass and center of mass

f p dr dydz f,;.:p dax dy dz fyp dx dy dz / zpdrdydz

e Limits can not be written
easily, analytically

* MC integration is useful




#include "nrutil.h"

n=... Set to the number of sample points desired.
den=... Set to the constant value of the density.
sw=swx=swy=swz=0.0; Zero the various sums to be accumulated.
varw=varx=vary=varz=0.0;
vol=3.0*7.0%2.0; Volume of the sampled region.
for(j=1;j<=n;j++) {

x=1.0+3.0*ran2 (&idum) ; Pick a point randomly in the sampled re-

y=(-3.0)+7.0*ran2 (kidum) ; gion.

z=(-1.0)+2.0*ran2 (&idum) ;

if (z*z+SQR(sqrt(x*x+y*y)-3.0) < 1.0) { Is it in the torus?

sw += den; If so, add to the various cumulants.

SWX += X*den;

SWy += y*den,;

SWZ += Z*den;

varw += SQR(den);

varx += SQR(x#*den)

vary += SQR(y*den) ;

varz += SQR(z*den);

}

}
w=vol#*sw/n; The values of the integrals (7.6.5),
x=vol*swx/n;
y=vol*swy/n;
z=vol*swz/n;
dw=vol*sqrt ((varw/n-SQR(sw/n))/n); and their corresponding error estimates.
dx=vol*sqrt ((varx/n-SQR(swx/n))/n);
dy=vol*sqrt ((vary/n-SQR(swy/n))/n);
dz=vol#*sqgrt((varz/n-SQR(swz/n))/n);



Nonuniform density torus

P £ i
'.:l'.-.-

* Whatwillyoudo if plz.y,2)=¢

* Define den = exp (5.*z) and do weighted
average?

* Very inefficient, points will be wasted in low
density region

* Importance sampling:

1

| mig

ds = e*dz so that s=—e7, z=_-In(5s) (7.
) )

Then pdz = ds, and the limits —1 < z < 1 become .00135 < s < 29.682.



#include "nrutil.h"

n=... Set to the number of sample points desired.
sw=swx=swy=swz=0.0;
varw=varx=vary=varz=0.0;
ss=0.2% (exp(5.0) -exp(-5.0)) Interval of s to be random sampled.
vol=3.0#*7.0%*ss Volume in x,y,s-space
for(j=1;j<=n;j++) {

x=1.0+3.0*ran2(&idum) ;

y=(-3.0)+7.0*ran2 (&idum) ;

s=0.00135+ss*ran2 (&idum) ; Pick a point in s.
z=0.2*log(5.0%s); Equation (7.6.7).
if (z*z+SQR(sqrt (x*x+y*y)-3.0) < 1.0) {
sw += 1.0; Density is 1, since absorbed into definition
SWX += X; of s.
SWY += ¥;
SWZ += Z;

varw += 1.0;
Varx += X*X;
vary += y*y;
Varz += Z*Z;
s
-

w=vol*sw/n; The values of the integrals (7.6.5),
x=vol*swx/n:

y=vol#*swy/n;

z=vol*swz/n:

dw=vol*sqrt((varw/n-SQR(sw/n))/n); and their corresponding error estimates.
dx=vol*sqrt((varx/n-SQR(swx/n))/mn);

dy=vol*sqrt ((vary/n-SQR(swy/n))/n) ;

dz=vol*sqrt((varz/n-SQR(swz/n))/n);



Importance Sampling

F—ffrﬂ—[ pdV = X}{}:I:\ (£2/v%) — (£/p)” with _[wﬂ'=1

What is the optimal choice of p? Make f/p as flat as possible

qz<f_2> < > /i_ztﬂ_{/gp{wr:_ i au—[[m]

Minimize variance subject to the constraint of probability conservation

0= 51)( f dl—[/fdl] —)./pdl)

Results in | f| |f|
P=—x= ,
VA JIf1dV




Stratified sampling

* Subdivide in regions and throw points

* For two equal regions with same number of points
1

(f) = 5 ((fha+(f))
Var ((f)) = % Var ((f),) + Var ((f),)]
1 [Vara (f) | Vary (f)]
1Nz TN
_ % [Var, (f) + Vars (f)]
) 1 1 T URY
Var (f) = 2 Varg (f) + Vars (f)] + — R (fha —(FDs)

* For unequal number of points in two regions a and b

s 1 | Var, Var




Stratified sampling (2)

. PP ]. T\"Tallca {f:] -‘i""ral'b (f}
Var ((f)') = = . + — .
o I ’:]: ‘x ) ‘x - ‘x i1
which 1s mininuzed (one can easily verify) when
..'x:r.-_'g_ L I:TQ_
N T, + T

* Similar for region b, which then gives,

o g Ta + Gb}g
Mar [{F ) = ( N
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