
(C++) ROOT & ALICE Data
Analysis (++ More ??!!)

Indranil Das

indranil.das@cern.ch

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 1/76

Outline : Life cycle of EHEP PhD student

1 C++ language

2 ROOT : HEP analysis tool

3 AliRoot : ALICE Analysis Software

4 Various

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 2/76

ROOT in a nutshell (GRIDKA-2013)

sftweb.cern.ch
root.cern.ch ROOT Tutorial at GridKa School 2013

ROOT in a nutshell

• Framework for large scale data handling
• Provides, among others,

– an efficient data storage, access and query system
(PetaBytes)

– advanced statistical analysis: histogramming, fitting,
minimization and multi-variate analysis algorithms

– scientific visualization: 2D and 3D graphics, Postscript, PDF,
LateX

– geometrical modeler
– PROOF parallel query engine

• An Open Source Project

4
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 3/76

ROOT in a nutshell (GRIDKA-2013)

sftweb.cern.ch
root.cern.ch ROOT Tutorial at GridKa School 2013

Why ROOT ?

• The analysis of data coming from LHC experiments
(and also other experiments) requires a powerful and
general toolkit
–Visualisation
–Statistical studies
–Data reduction
–Multivariate techniques

• A scalable and reliable persistency method is needed
to write the data on disks and tapes.

6
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 4/76

ROOT in a nutshell (GRIDKA-2013)

sftweb.cern.ch
root.cern.ch ROOT Tutorial at GridKa School 2013

ROOT Application Domains

Data Storage: Local, Network

Data Analysis & Visualization

General Framework
7

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 5/76

ROOT in a nutshell (GRIDKA-2013)

sftweb.cern.ch
root.cern.ch ROOT Tutorial at GridKa School 2013

ROOT Libraries

• Overview of ROOT libraries and their dependencies

8

- 1,700,000 lines of
code.

- More than 100
shared libraries

- Fully cross-
platform: Unix/
Linux, MacOS and
Windows.

- More than 10000
downloads every
month

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 6/76

ROOT basics

ROOT : An Object-Oriented Data Analysis Framework

Download : https://root.cern.ch/downloading-root

Installation : Installation from source code (click here)

Forum : ROOT discussion (click here)

Add alias in your ”$HOME/.bashrc”

alias set school root = ’source
$YOUR ROOT INSTALLATION PATH/bin/thisroot.sh’

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 7/76

https://root.cern.ch/
https://root.cern.ch/downloading-root
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#installing-the-source
https://root.cern.ch/phpBB3/

ROOT session

 Start root session from terminal and quit from session

[user@Rjn-Inlap]$ root -l
root [0] .q

 Execute a root macro “code.C” interpreter mode

[user@Rjn-Inlap]$ root -l code.C

 Compile, run and send the stdout and stderr of “code.C”
to output.log

[user@Rjn-Inlap]$ root -l -n -b -q code.C+ > output.log 2>&1

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 8/76

ROOT session

If some libraries are to be loaded or header file path to
appended at the starting of root session, it can be set by
creating rootlogon.C

{
TString includePath = ”-I$ALICE ROOT/include ”;
includePath += ”-I$ALICE ROOT/RAW ”;
gSystem->SetIncludePath(includePath.Data());

gSystem->Load(”libAliHLTMUON”);

cout << ”loading user specific header file path and libraries” << endl;
}

Caution
Note that the path of library libAliHLTMUON.so must be included in your
LD LIBRARY PATH environment before you start the “root” session, otherwise the
library loading will not work. However, this will not stop you to start a ”root” session.

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 9/76

CINT/Cling

CINT/Cling : ROOT’s C++ Interpreter

Commands starting with “.”

root [0] .? // to list all the interpreter commands
root [1] .L Code.C // to load macro
root [2] .x Code.C // to execute macro
root [3] .x Code.C+ // to compile and execute macro

Commands starting with “.!” will run shell commands

root [0] .! hostname
Rjn-Inlap
root [1] .! whoami
user

TAB completion feature is also an important feature

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 10/76

Function

ROOT user can define and plot 1D, 2D or 3D

[user@Rjn-Inlap]$ root -l
root [0] TF1 *fn = new TF1(”fn”,”1/sqrt(1-x*x)”,0,1)
root [1] fn->GetXaxis()->SetTitle(”#beta”)
root [2] fn->GetYaxis()->SetTitle(”#gamma”)
root [3] fn->Draw()
Info in <TCanvas::MakeDefCanvas>: created default TCanvas
with name c1
root [4] gROOT->GetListOfCanvases()->At(0)->
SaveAs(”beta vs gamma.pdf”)
Info in <TCanvas::Print>: pdf file beta vs gamma.pdf has been
created β

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

γ

2

4

6

8

10

1/sqrt(1-x*x)

In daily life 1D function is mostly used with multiple
parameters, followed by 2D functions.

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 11/76

Function

The function can be declared inside a macro Code.C

and then executed as below to plot it in canvas

[user@Rjn-Inlap]$ root -l code.C++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 12/76

Graph

Useful methods TGraph, TGraphErrors, TGraphAsymmErrors, and TMultiGraph

β
0 0.2 0.4 0.6 0.8 1

γ

1

2

3

4

5

6

7

Graph

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 13/76

Histogram (CSC-2011)

Histogramming

• Histogram is just occurrence counting, i.e. how often
they appear

• Example: {1,3,2,6,2,3,4,3,4,3,5}

CSC11 • ROOT 7

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 14/76

Histogram (CSC-2011)

CSC11 • ROOT

Histogramming

• How is a Real Histogram Made?
Lets consider the age distribution of the CSC
participants in 2008:

Binning:

Grouping ages of
participants in several
categories (bins)

8

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 15/76

Histogram (CSC-2011)

Histogramming

CSC11 • ROOT 9

Shows distribution of ages, total number of entries (57
participants) and average: 27 years 10 months 6 days…

Table of Ages
(binned)

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 16/76

Histogram

• Constructor : TH1 *h1 = new TH1(”histName”,”histTitle”,nofBins,minX,maxX)

• Fill : h1->Fill(value)

• Fill with weight factor : h1->Fill(value, weight)

• Draw : h1->Draw()

• Scale : h1->Sumw2() ; h1->Scale(factor)

• Add : h1->Add(h2)

• Divide : h1->Divide(h2)

• Set x-axis range: h1->SetAxisRange(2.,4.)

• Set y-axis range: h1->SetMinimum(2.); h1->SetMaximum(4.);

• Merge 2 bins : h1->Rebin(2)

• Findbin : h1->FindBin(3.0)

• GetBinContent : h1->GetBinContent(2); h1->GetBinContent(h1->FindBin(3.0))

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 17/76

File

• Write objects to ROOT file :

TFile *fout = new TFile(”output.root”,”recreate”) ; obj->Write(); fout->Close(); delete fout;

• Almost all ROOT classes are derived from TObject class, any types of objects

that are defined inside the ROOT framework can be written (read) to (from)

ROOT file. Generally written with ”.root” extension.

• Any object created after the creation of TFile object will be written to the

TFile (i.e. output.root in above example)

• If multiple ROOT files are opened, the last opened file will be used for writing

the objects

• Read objects from ROOT file :

TFile *fin = new TFile(”input.root”) ; obj = fin->Get(”obj name”);

• You can not close/delete the input file or input file pointer, if you want to use

the ”obj” pointer in the later part of your code

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 18/76

Fitting in ROOT : Gaussian

h1
Entries 100000
Mean 05− 7.591e
RMS 1.996

10− 8− 6− 4− 2− 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

h1
Entries 100000
Mean 05− 7.591e
RMS 1.996

Gaussian

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 19/76

Fitting in ROOT : Signal + Bkg

h1
Entries 100000
Mean 2.969−
RMS 4.576

10− 8− 6− 4− 2− 0 2 4 6 8 10
0

200

400

600

800

1000 h1
Entries 100000
Mean 2.969−
RMS 4.576

Gaussian

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 20/76

Fitting in ROOT : Signal + Bkg

h1
Entries 100000
Mean 2.969−
RMS 4.576

10− 8− 6− 4− 2− 0 2 4 6 8 10
0

200

400

600

800

1000 h1
Entries 100000
Mean 2.969−
RMS 4.576

Gaussian

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 21/76

Graphics (CSC-2011)

2D/3D

We have seen 1D histograms, but there are

also histograms in more dimensions.

CSC11 • ROOT 13

2D Histogram 3D Histogram

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 22/76

Graphics (CSC-2011)

OpenGL

 OpenGL can be used to render 2D & 3D histograms,
functions, parametric equations, and to visualize 3D
objects (geometry)

CSC11 • ROOT 14

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 23/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

1 Start root session with splash screen

2 Add, subtract, multiply, divide

3 Redirect “all” output of ROOT session to temp.out file

4 Print out global environments to output.txt

5 gROOT, gSystem, gRandom, gPad, gStyle

6 List the methods of a class

7 Go to $ROOTSYS/tutorials, then apply .!pwd and pwd()

8 Try tab completion with edit(”rootlogon.C”)

9 Change the EDITOR environment and try again

10 Change back to earlier directory from $ROOTSYS/tutorials

11 Create class TPoint and print its’ detail information

12 Set and print the variables in “for” loop inside ROOT session

13 Dump the object member values

14 Unnamed and named script : first.C vs rootlogon.C

15 Loading, unloading, running, compiling and compile+run

16 Compile in debug or optimized mode and +/++

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 24/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Checkpoint I

17 Write a class in a macro and run that prints “hello World”

18 How do you know the working directory inside macro ?

19 Where can you find earlier commands that have been applied during ROOT
session ?

20 What is virtual function ? How to implement that in class ?

21 How to create abstract base class ?

22 Write code to create memory on stack and on heap

23 Write an example memory leak code

• How to compile macro containing ROOT classes using g++ ?

• Spot the memory leak in the code that you have written before.

• What is code profiling ? How does it help to improve your code ?

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 25/76

Tree

• Arrange different types of objects and data types in single place.

• Formatted in such way such that accessing the entries is fast.

• While written to disk uses less disk resource

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 26/76

Tree (CSC-2011)

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 27/76

Tree structure

• Branches: directories

• Leaves: data containers

• Can read a subset of all branches – speeds up
considerably the data analysis processes

• Branches of the same TTree can be written to
separate files

CSC11 • ROOT 103
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 28/76

Tree structure

CSC11 • ROOT 102
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 29/76

Memory ↔ Tree

• Each Node is a branch in the Tree

CSC11 • ROOT 104

0

T.Fill()

T

Memory

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 30/76

Memory ↔ Tree

• Each Node is a branch in the Tree

CSC11 • ROOT 105

0
1
2
3
4
5
6

T.GetEntry(6)

T

Memory

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 31/76

Five Steps to Build a Tree

Steps:

 1. Create a TFile

 2. Create a TTree

 3. Add TBranch to the TTree

 4. Fill the tree

 5. Write the file

CSC11 • ROOT 106
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 32/76

Example macro

void WriteTree()
{
 Event *myEvent = new Event();
 TFile f("AFile.root", "RECREATE");
 TTree *t = new TTree("myTree","A Tree");
 t->Branch("EventBranch", &myEvent);
 for (int e=0;e<100000;++e) {
 myEvent->Generate(); // hypothetical
 t->Fill();
 }
 t->Write();
}

CSC11 • ROOT 107
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 33/76

Step 1: Create a TFile Object

Trees can be huge need file for swapping filled entries

CSC11 • ROOT 108

 TFile *hfile = TFile::Open("AFile.root",
 "RECREATE");

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 34/76

Step 2: Create a TTree Object

The TTree constructor:

– Tree name (e.g. "myTree")

– Tree title

CSC11 • ROOT 109

TTree *tree = new TTree("myTree","A Tree");

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 35/76

Step 3: Adding a Branch

• Branch name

• Address of pointer
to the object

CSC11 • ROOT 110

Event *myEvent = new Event();
myTree->Branch("eBranch", &myEvent);

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 36/76

Step 4: Fill the Tree

• Create a for loop

• Assign values to the object contained in each branch

• TTree::Fill() creates a new entry in the tree: snapshot
of values of branches’ objects

CSC11 • ROOT 111

for (int e=0;e<100000;++e) {
 myEvent->Generate(e); // fill event
 myTree->Fill(); // fill the tree
}

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 37/76

Step 5: Write Tree To File

CSC11 • ROOT 112

myTree->Write();

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 38/76

Reading a TTree

• Looking at a tree

• How to read a tree

• Friends and chains

CSC11 • ROOT 113
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 39/76

Example macro
void ReadTree() {
 TFile f("AFile.root");
 TTree *T = (TTree*)f->Get("T");
 Event *myE = 0; TBranch* brE = 0;
 T->SetBranchAddress("EvBranch", &myE, brE);
 T->SetCacheSize(10000000);
 T->AddBranchToCache("EvBranch");
 Long64_t nbent = T->GetEntries();
 for (Long64_t e = 0;e < nbent; ++e) {
 brE->GetEntry(e);
 myE->Analyze();
 }
}

CSC11 • ROOT 114

Data pointers (e.g. myE) MUST be set to 0
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 40/76

How to Read a TTree

Example:

1. Open the Tfile

2. Get the TTree

CSC11 • ROOT 115

TFile f("AFile.root")

TTree *myTree = 0;

f.GetObject("myTree",my
Tree)

or

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 41/76

How to Read a TTree

3. Create a variable pointing to the data
root [] Event *myEvent = 0;

4. Associate a branch with the variable:
root [] myTree->SetBranchAddress("eBranch", &myEvent);

5. Read one entry in the TTree
root [] myTree->GetEntry(0)

root [] myEvent->GetTracks()->First()->Dump()

==> Dumping object at: 0x0763aad0, name=Track, class=Track

fPx 0.651241 X component of the momentum

fPy 1.02466 Y component of the momentum

fPz 1.2141 Z component of the momentum

[...]

CSC11 • ROOT 116
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 42/76

Branch Access Selection

• Use TTree::SetBranchStatus() or TBranch::GetEntry()
to select branches to be read

• Speed up considerably the reading phase

CSC11 • ROOT 117

TClonesArray* myMuons = 0;
// disable all branches
myTree->SetBranchStatus("*", 0);
// re-enable the "muon" branches
myTree->SetBranchStatus("muon*", 1);
myTree->SetBranchAddress("muon", &myMuons);
// now read (access) only the "muon" branches
myTree->GetEntry(0);

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 43/76

Looking at the Tree

TTree::Print() shows the data layout

root [] TFile f("AFile.root")
root [] myTree->Print();
**
*Tree :myTree : A ROOT tree *
*Entries : 10 : Total = 867935 bytes File Size = 390138 *
* : : Tree compression factor = 2.72 *
**
*Branch :eBranch *
*Entries : 10 : BranchElement (see below) *
..
*Br 0 :fUniqueID : *
*Entries : 10 : Total Size= 698 bytes One basket in memory *
*Baskets : 0 : Basket Size= 64000 bytes Compression= 1.00 *
..
…
…

CSC11 • ROOT 118
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 44/76

TTree Selection Syntax

Print the first 8 variables of the tree:

Prints all the variables of the tree:

Prints the values of var1, var2 and var3.

A selection can be applied in the second argument:

Prints the values of var1, var2 and var3 for the entries
where var1 is greater than 0

Use the same syntax for TTree::Draw()

CSC11 • ROOT 120

MyTree->Scan();

MyTree->Scan("*");

MyTree->Scan("var1:var2:var3");

MyTree->Scan("var1:var2:var3", "var1>0");

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 45/76

Looking at the Tree

TTree::Show(entry_number) shows values for one entry

root [] myTree->Show(0);
======> EVENT:0
eBranch = NULL
fUniqueID = 0
fBits = 50331648
[...]
fNtrack = 594
fNseg = 5964
[...]
fEvtHdr.fRun = 200
[...]
fTracks.fPx = 2.066806, 0.903484, 0.695610,-0.637773,…
fTracks.fPy = 1.459911, -0.409338, 0.391340, 1.244357,…

CSC11 • ROOT 121
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 46/76

TChain: the Forest

• Collection of TTrees: list of ROOT files containing the
same tree

• Same semantics as TTree

As an example, assume we have three files called
file1.root, file2.root, file3.root. Each contains tree
called "T". Create a chain:

CSC11 • ROOT 122

 TChain chain("T"); // argument: tree name
 chain.Add("file1.root");
 chain.Add("file2.root");
 chain.Add("file3.root");

Now we can use the TChain like a TTree!

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 47/76

T(3)
file3.root

TChain

CSC11 • ROOT 123

chain files together

T(2)
file2.root

T(1)
file1.root

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 48/76

Data Volume & Organisation

• A TFile typically contains 1 TTree

• A TChain is a collection of TTrees or/and TChains

CSC11 • ROOT 124

100MB 1GB 10GB 1TB 100GB 100TB 1PB 10TB

1 1 50000 5000 500 50 5

TTree TChain

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 49/76

CSC11 • ROOT

Tree Friends

• Trees are designed to be read only

• Often, people want to add branches to existing
trees and write their data into it

• Using tree friends is the solution:

– Create a new file holding the new tree

– Create a new Tree holding the branches for the user
data

– Fill the tree/branches with user data

– Add this new file/tree as friend of the original tree

125

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 50/76

Tree Friends

CSC11 • ROOT 126

TFile f1("tree.root");
tree.AddFriend("tree_1", "tree1.root")
tree.AddFriend("tree_2", "tree2.root");
tree.Draw("x:a", "k<c");
tree.Draw("x:tree_2.x");

tree_1 tree_2

tree

a b c

n x

o p

q r

i j

k l x

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 51/76

Splitting

CSC11 • ROOT 127

Split level = 0 Split level = 99

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 52/76

Splitting

• Creates one branch per member – recursively

• Allows to browse objects that are stored in trees, even
without their library

• Fine grained branches allow fine-grained I/O - read
only members that are needed

• Supports STL containers too, even vector<T*>!

CSC11 • ROOT 128
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 53/76

Splitting

Setting the split level (default = 99)

CSC11 • ROOT 129

Split level = 0 Split level = 99

 tree->Branch("EvBr", &event, 64000, 0);

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 54/76

Performance Considerations

A split branch is:

• Faster to read – if you only want a subset of data
members

• Slower to write due to the large number of branches

CSC11 • ROOT 130
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 55/76

Summary: Trees

• TTree is one of the most powerful collections available
for HEP

• Extremely efficient for huge number of data sets with
identical layout

• Very easy to look at TTree - use TBrowser!

• Write once, read many (WORM) ideal for experiments'
data; use friends to extend

• Branches allow granular access; use splitting to create
branch for each member, even through collections

CSC11 • ROOT 131
Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 56/76

Tree

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 57/76

Tree

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 58/76

Tree

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 59/76

Tree

htemp
Entries 10000
Mean 0.01768−
RMS 0.9985

a.e
4− 3− 2− 1− 0 1 2 3 4

0

50

100

150

200

250

300

350

400

htemp
Entries 10000
Mean 0.01768−
RMS 0.9985

a.e

a.e
4− 3− 2− 1− 0 1 2 3 4

b
.e

4−

3−

2−

1−

0

1

2

3

4

0

10

20

30

40

50

60

70

80

90

b.e:a.e

htemp
Entries 10000
Mean 0.4971
RMS 0.3058

b.t
0.4− 0.2− 0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

50

100

150

200

250 htemp
Entries 10000
Mean 0.4971
RMS 0.3058

b.t

a.t
0.2 0.4 0.6 0.8 1

b
.t

0.2−

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b.t:a.t

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 60/76

HEP events (Kinematics)

• It starts with a collision.

• Different sets of particles are produced at various stages.

• High energetic particles are favoured at the earlier stage
of collisions.

• It is then followed by the generation of low mass particles.

• The unstable particles decay into the stable particles in
single or multiple steps.

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 61/76

HEP events (Detector)

We measure the stable particles that interacts with the
detector. The particle transport code like GEANT, FLUKA
takes care of the interaction processes.

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 62/76

Graphics (CSC-2011)

Geometry

• Describes complex detector geometries

• Allows visualization of these detector geometries with
e.g. OpenGL

• Optimized particle transport in complex geometries

• Working in correlation with simulation packages such
as GEANT3, GEANT4 and FLUKA

CSC11 • ROOT 15

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 63/76

Graphics (CSC-2011)

Geometry

CSC11 • ROOT 16

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 64/76

HEP events (Reconstruction)

• Find out the detector channels that have been fired.

• Apply the detector calibration and find out the corrected
charge deposition.

• Combine the information from Calorimeter and Tracking
detectors.

• Reconstruct the track of particles which provides the
information of (px , py , pz ,E)

• Combine the tracks of secondary particles to find out the
primary particles.

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 65/76

Event display of pp collision

event → track → cluster

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 66/76

Track header containing cluster

Compare with the classes in the TTree section

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 67/76

Event header

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 68/76

Writing HEP event

Splitting or not splitting

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 69/76

Writing HEP event

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 70/76

Reading HEP event

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 71/76

Checkpoint II

1 In case multiple files are opened, how the object can be written in the first file
instead of last ?

2 In which case the input ROOT file can be closed while you are still using the
object stored into that file ?

3 Write/read the event tree to/from ROOT file

4 Now scan tree.root for fNtrack and fNvertex in ROOT session

5 Next scan tree.root for fNTracks->fPx and fNvertex in ROOT session

6 Draw fNTracks->fPx from tree.root in ROOT session using tree->Draw(””)

7 Draw fNTracks->fPx vs fNTracks->fPz from tree.root in ROOT session

8 Draw fNTracks->fPx vs fNTracks->fPz for (fNvertex>5) in ROOT session

• Copy the tree.root of above example into tree1.root, tree2.root and tree3.root

and read all three files using TChain in a macro.

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 72/76

ALICE software installation

Read the detail installatation process at,

https://alice-doc.github.io/alice-analysis-tutorial/building/

Start with simpler installation method ”Install ALICE software with alibuild”.

However, if you own a laptop you may try the quick start procedure.

The terminal logs of quick start procedure are uploaded in the indico page.

The complete build procedure,

i took ∼12 hours, in a typical Indian home network.

ii The complete build procedure will ask you few times to apply your CERN

credentials.

iii The complete build procedure may require ∼24 GB of diskspace.

Note that this quick start is a standalone procedure. The software discussions

with the collaboration colleagues should be based on the information ath the

link as mentioned above.

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 73/76

https://alice-doc.github.io/alice-analysis-tutorial/building/

ALICE software installation

Install the python and alibuild package as superuser ’root’

yum install python-pip
pip install –upgrade pip
pip install alibuild

I presume you install ALICE software in $HOME/alice

$ mkdir $HOME/alice
$ cd $HOME/alice
$ export ALIBUILD WORK DIR=”$HOME/alice/sw”
$ aliBuild init AliRoot,AliPhysics (this will download the git repository)
$ aliDoctor AliPhysics (download the packages required for installations as
mentioned in the output)
$ aliBuild build AliPhysics
$ export ALICE WORK DIR=”$HOME/alice/sw”
$ alienv q
$ alienv enter AliPhysics/latest

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 74/76

ALICE software installation

If you want to keep another version of AliPhysics and AliRoot, without changing the

previous installation,

$ mkdir $HOME/alice/v5-09-02-01
$ cd $HOME/alice/v5-09-02-01
$ aliBuild init AliRoot,AliPhysics -w ../sw
$ cd AliPhysics ; git checkout v5-09-02-01 ; cd ../
$ cd AliRoot ; git checkout v5-09-02 ; cd ..
$ aliBuild build AliPhysics -w ../sw -z
$ alienv q
$ alienv enter VO ALICE@AliPhysics::latest-v5-09-02-01-release

http://alimonitor.cern.ch/packages/

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 75/76

http://alimonitor.cern.ch/packages/

THANK YOU

Indranil Das — (C++) ROOT & ALICE Data Analysis (++ More ??!!) 76/76

