Making of Detector for HEP

Sanjib Muhuri

VECC

Lecture-1

What we will be discussing in next two classes !!

No of particles

Type of particles (Mass, Charge, spin and so on..)

Momentum of particles

Energy / Energy Range of produced particles

Expected background from source?

What

dN_y/dA(/cm²)

Tells?

Type of particles (Mass, Charge, spin and so on..)

$$\frac{dE}{dx} = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

Information about type of particles has direct link to the choice of detection technique

We know (expect)
Whether it is electron/gamma/pion
Or something else!!

Momentum of particles

Energy(Range) of produced particles

Information from the Source	Impact on Detector building	
No of particle (Particle density) expected	Detector cell size	
Particle type (Charge, mass and other)	Type of detector, material	
Energy/Momentum range	Detector material	
Type of measurement	Mode of measurement(Tracker/calorimeter)	

Event selection/collimeter

This is most relevant to test beam For experiments in Heavy ion collision

Collimation is a process to narrow a beam of particles/waves. It will result a more directional beam or limit the spatial cross-section.

Selection of proper particle and reject debris

This is responsible for the real time selection of the subset of data to be of choice

It can done both ON/OFF the detector. It always introduce some kind of buffering.

Simplest schematic for the trigger detector

	Bubble chamber	Spark chamber	Proportional chamber	Drift chamber	Scintillator
Dead time	50 ms	100 ms	200 ns	$100 \mathrm{\ ns}$	10 ns

Trigger

This is responsible for the real time selection of the subset of data to be of choice

It can done both ON/OFF the detector.
It always introduce some kind of buffering.

Detector

Particle detector is an instrument to measure properties of a particle

Adaptation of a particular detection technique depends on the purpose of the measurement

Particle Interaction

Interaction of charged particle (except e-)	Interaction of photons/e-	
 ✓ Multiple scattering ✓ ionisation and excitation ✓ Bremsstrahlung ✓ Other radiation losses 	 □ Bremsstrahlung □ Pair production, Compton and photoelectric □ Multiple scattering, ionization loss 	
✓ Strong interaction (depending on the energy of the particle)	Depending on the energy, Electrons are prone to EM-shower production	
Interaction of neutral particles (m > 0)		
depends on energies: from > 100 MeV to < 1 eV	Choices of the detector (both spectrometer and calorimeter) material, size, shape and other physical parameter strongly depend on the type	
Interact only with nucleus via strong interaction	of targeted particles	

Detector Detectors Solid Gas Cherenkov Scintillation detector detector Semiconductor detector Spark Ionization Chamber counter Proportional Geiger-Muller counter counter (MWPC, TPC, Drift Chamber) Silicon Diamond Germanium 19/11/2020 14

Detector Detectors (depending on active material) Cherenkov Scintion detector Spark Tacker Chamber Semiconductor detector Ionization *c*ounter (MWPC, TPC; Drift Chambel Cal Gilicon Geiger-Muller counter Diamond Germanium 19/11/2020

Detector

Detectors (performance)

Important properties of the detector

- ✓ Sensitivity of the detector to <u>lowest expected detection</u>.
- ✓ The detector should work in <u>linear domain</u> for the range of measurement.

There are other parameters as well

- ✓ Time resolution
- ✓ Spatial resolution
- ✓ Energy resolution
- ✓ Detection efficiency
- ✓ Misidentification probability
- ✓ And so on.....

Detectors (performance)

Important properties of the detector

- ✓ Sensitivity of the detector to <u>lowest expected detection</u>.
- ✓ The detector should work in <u>linear domain</u> for the range of measurement.

$$\frac{S}{N} = \frac{mean}{standard\ deviation} = \frac{\overline{x}}{s}$$

S => Mean of the signal N => Standard deviation

Detector

Detectors (performance)

Important properties of the detector

- ✓ Sensitivity of the detector to <u>lowest expected detection</u>.
- ✓ The detector should work in <u>linear domain</u> for the range of measurement.

Readout Electronics

Electrical pulse to number

The general aim is collect electrical signals (a current pulse) from the detector and process it to

- ✓ Differentiate minimum detectable signal from back ground noise
- ✓ Measure the energy (from signal amplitude).
- ✓ Counts the incidence (multiplicity)
- ✓ Optimize the timing (to avoid overlapping events)

The next step consist of Digitization of the signal and storing with (additional) conditions

- ✓ Analog to digital conversion
- ✓ Implementation of additional conditions
- ✓ Storing with all relevant information for offline use

Readout Electronics

Electrical pulse to number

Schematic of the steps for the readout electronics

End of Lecture-1

How to Detect

Particles to be detected

❖ Decide what should be the detector

✓ Gas, Liquid or Solid

✓ Single layer OR Segmented

Measured quantities Identity, mass, energy, momentum, track......

Creating the Bang

Few Numbers

 $6.5 \text{ TeV} => 1.6 \times 10^{-7} \text{ J}$

1000 times smaller compare to the energy of a Bee

 $1 \text{ GeV} \Rightarrow 1.6 \times 10^{-10} \text{ J}$

1.16 x 10¹³ Kelvin temperature

Table 35.1: Typical resolutions and deadtimes of common charged particle detectors. Revised November 2011.

Detector Type	Intrinsinc Spatial Resolution (rms)	Time Resolution	Dead Time
Resistive plate chamber	≲10 mm	$1 \text{ ns } (50 \text{ ps}^a)$	_
Streamer chamber	$300 \ \mu \text{m}^b$	$2~\mu \mathrm{s}$	$100~\mathrm{ms}$
Liquid argon drift [7]	$\sim\!\!175450~\mu\mathrm{m}$	$\sim 200~\rm ns$	$\sim 2~\mu \mathrm{s}$
Scintillation tracker	${\sim}100~\mu\mathrm{m}$	$100 \text{ ps}/n^c$	10 ns
Bubble chamber	$10150~\mu\mathrm{m}$	1 ms	$50~\mathrm{ms}^d$
Proportional chamber	50–100 $\mu { m m}^e$	2 ns	20-200 ns
Drift chamber	50–100 $\mu\mathrm{m}$	2 ns^f	20-100 ns
Micro-pattern gas detectors	30–40 $\mu\mathrm{m}$	$< 10 \ \mathrm{ns}$	10-100 ns
Silicon strip	pitch/ $(3 \text{ to } 7)^g$	${\rm few}\ {\rm ns}^h$	$\lesssim 50 \text{ ns}^h$
Silicon pixel	$\lesssim 10~\mu\mathrm{m}$	${\rm few}\ {\rm ns}^h$	$\lesssim 50 \text{ ns}^h$
Emulsion	$1~\mu\mathrm{m}$	_	_

19/11/2020 25