Making of Detector for HEP

Sanjib Muhuri VECC

3rd ALICE-INDIA school on Quark Gluon Plasma

Lecture-2

What we will be discussing in next two classes !!

Readout Electronics

Electrical pulse to number

Schematic of the steps for the readout electronics

Where we end !!

What we discuss in today's lecture?

Physics Goal and observable

19/11/2020

Simulation with Event Generator

Results from HIJING

Information about the source

Information for the conceptual design

Informations we have

Block of material: Preferably compact and highly dense.

$N(X_R) = 2^{XR}$	$E(X_R) = E\gamma / 2^{XR}$
$ N(\Lambda_R) - Z^{m}$	

How should be the conceptual design?

	1.	It should be a calorimeter.
--	----	-----------------------------

- Must have **compact & high density** material 2.
- Should have fine segmentation (Ideally)* 3.
- The depth may be about **20 X**_R 4.
- The transverse size R_{in} = 6cm, R_{out} = 80cm 5.

 \checkmark The fine segmentation need optimization.

✓ Cost and physics motivation should be weighted

Important to note: Tracking need three precise points

Next Step: Geometry and performance simulation

Optimized configuration

	viewer-1 (OpenGLImmediateX)
• 20 GeV/c π ⁰	
decaying to 2γ	

GEANT Simulation

Materials used in the GEANT4

 \Box Absorber: – Tungsten (X_R =0.35 cm , R_M =0.93 cm)

□ Active Material: - Silicon

- High Density
- Good energy resolution
- Insensitive to magnetic field
- Technologically easy to find

□ Size of detector

- PAD detectors of 1 cm² area
- Pixels detectors of 1 mm² area

Other materials

PCB, air gap, electronics, cooling arrangements, support structures

Optimized configuration

GEANT Simulation

Optimized configuration

STEP-1: TB-1

A Segments of 5'

Energy : 5 → 60 GeV for electron 120 GeV pion as MIP

- 1. Break down voltage > 500V
- 2. Leakage current ~ 10nA/cm²
- 3. Capacitance at full depletion ~40pF/cm2
- 4. Full depletion voltage 40V
- 5. Dead space b/w 1 cm² pads ~ 110um
- 6. Cross Talk probability ~ 10%
- 7. Depletion width ~ 300um

 ${}^{50}_{E_0} (GeV)$

Energy : 20 → 120 GeV for electron 120 GeV pion as MIP

6x 6 array of silicon PAD of 1 cm sq.

The Prototype fabrication and test are successful

End of Lecture-2

In case you have query Mail to sanjibmuhuri@vecc.gov.in

Measured quantities

Identity, mass, energy, momentum, track......

1000 times smaller compare to the energy of a Bee

1 GeV => 1.6 x 10⁻¹⁰ J

1.16 x 10¹³ Kelvin temperature

	Intrinsinc Spatial	Time	Dead
Detector Type	Resolution (rms)	Resolution	Time
Resistive plate chamber	$\lesssim 10 \text{ mm}$	$1 \text{ ns} (50 \text{ ps}^a)$	
Streamer chamber	$300 \ \mu m^b$	$2~\mu { m s}$	$100 \mathrm{\ ms}$
Liquid argon drift [7]	${\sim}175{-}450~\mu{\rm m}$	$\sim 200~{\rm ns}$	$\sim 2~\mu { m s}$
Scintillation tracker	${\sim}100~\mu{ m m}$	$100 \text{ ps}/n^c$	10 ns
Bubble chamber	10–150 μm	$1 \mathrm{ms}$	50 ms^d
Proportional chamber	50–100 μm^e	2 ns	20-200 ns
Drift chamber	$50100~\mu\mathrm{m}$	2 ns^f	20-100 ns
Micro-pattern gas detectors	$3040~\mu\mathrm{m}$	$< 10 \ {\rm ns}$	10-100 ns
Silicon strip	pitch/ $(3 \text{ to } 7)^g$	few ns^h	$\lesssim 50 \ {\rm ns}^h$
Silicon pixel	$\lesssim\!10~\mu{ m m}$	$\mathrm{few}\;\mathrm{ns}^h$	$\lesssim 50 \text{ ns}^h$
Emulsion	$1~\mu{ m m}$		

Table 35.1: Typical resolutions and deadtimes of common charged particledetectors. Revised November 2011.

Material(Z)	Density(g/cm ³)	X_R (cm)	R_M (cm)	λ_I (cm)	$\left(\frac{dE}{dx}\right)_{mip}$ (Mev/cm)
Fe(26)	7.774	1.757	1.719	16.77	11
Cu(29)	8.92	1.436	1.568	18.79	13
Pb(82)	11.34	0.56	1.60	17.59	13
W(74)	19.25	0.35	0.93	9.946	22
U(92)	19.05	0.31	1.009	11.03	21