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Two di↵erent approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits
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physical system

• Allow quantum physics to
help search solution space

• Low temperature
environment could help
solve problems
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Type Discrete Gate Quantum Annealer

Property
Universal (any 

quantum algorithm can 
be expressed)

Not universal — certain 
quantum systems

How? IBM - Qiskit 
~50 Qubits

DWave - LEAP 
~5000 Qubits

What?

Quantum	compuOng	has	a	long	and	disOnguished		history	but	is	only	now	
becoming	pracOcable.	(Feynman	’81,		Zalka	'96,	Jordan,	Lee,	Preskill	…	see	Preskill	1811.10085	for	

review).	Two	main	types	of	Quantum	Computer:



•Both	types	operate	on	the	Bloch	sphere:	basically	measuring																													
where																																														are	the	possible	eigenvector	eqns		

•	Each	i	represents	a	single	qubit		

•A	discrete	quantum	gate	system	is	good	for	looking	at	things	like	entanglement,	
Bell’s	inequality	etc.	Also	discrete	problems,	cryptographical	problems,	Shor’s,	
Grover’s	algorithms,	etc.	

•A	quantum	annealer	is	good	for	looking	at	network	opOmisaOon	problems	but	
from	our	perspecOve	it	is	also	a	more	natural	tool	for	thinking	about	field	
theory.	It	is	based	on	the	general	transverse	field	Ising	model	(Kadowaki,	Nishimori):

Why we focus on continuous time

|0i

|1i

| i =
1p
2
(|0i + |1i)

Classical bits: fundamentally discrete ! 0 or 1, nothing in between

Lends itself to a discrete digital description: bit flips either happen
or they don’t

Quantum bits: continuous rotations are possible

Breaking operations up into discrete chunks is not natural ! an
(exact) bit flip is just as hard as any other rotation

Bonus feature: applied gate based algorithms similar to continuous time
operations ! cont. time algorithms have implications for gate based

II. SET-UP OF A SIMPLE PROBLEM

A useful potential to focus on is the following quartic one:
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�

8
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✏

2v
(�� v) . (1)

The potential is shown in Fig.1. On the left we show the “thick-wall” regime where ✏ is large. This limit is when the
barrier is close to disappearing (or has disappeared altogether) and the walls become comparable in size to the bubble
itself. For numerics we choose v = � = 1 and ✏ = 0.3. The opposite “thin-wall” regime (for which we choose ✏ = 0.01)
is the limit in which ✏ is small and is approximately the difference in vacuum energy density between the false and
true minima.

We are interested in the situation where the system starts in the false vacuum, and our objective is to study the
rate per unit volume of tunnelling out of it. The analytic calculation of this rate is a classic problem, but it is worth
briefly recapping it in order to recast the result in a form that can easily be compared with the results from a quantum
simulation. It proceeds as follows.

First let us remove the extraneous constant term by working with U(�) = V (�) � V (�+), which has U(�+) = 0.
Using the well-known technique of [42–45], the bubble profile is given by finding a “bounce solution” to the following
differential equation:
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where in four dimensions, c takes the value 2 or 3 for a finite temperature O(3) symmetric bubble, or a purely quantum
tunnelling O(4) symmetric instanton, respectively. The required “bounce” is subject to the boundary condition that
d�/d⇢ = 0 as ⇢ ! 0,1, which determines the starting value �(0), which is the field-value at the centre of the radially
symmetric bubble or instanton (also called the escape-point). The resulting �(⇢) profile for our particular choice of
parameters is shown in Fig. 2.

Once such a solution is determined, the tunnelling rate per unit volume can be estimated from its classical action:

�4 = A4 e
�S4[�] ,

�3 = A3 Te
�S3[�]/T , (3)

respectively. The quantum determinant prefactors A4, A3 are notoriously difficult to calculate, but for our purposes
it will be sufficient to focus on the influence of the classical action.

The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�a4/3

p
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Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:
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3 ; S0

3 = 19.4 (5)

The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:

S4 =
27⇡2S4

1

2✏3
; S3 =

16⇡3S3
1

3✏2
. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
this terminology.
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These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
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1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X
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X

j
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Z
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Z
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Z
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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•What	does	“anneal”	mean?

Actually solving problems (physics I won’t talk about)
Quantum Hamiltonians generalize classical Monte Carlo algorithms
ex. simulated annealing
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
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These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,
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�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify
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Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
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However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
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value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
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Getting physics to solve hard problems ! transverse field
Ising model

Physics Language, Hamiltonian:
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nX

i ,j

Jij ZiZj
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A

What this means in non-physics language:Pn
i Xi ! Bit flips, hops state through n dimensional hypercube

Pn
i hi Zi +

Pn
i ,j Jij ZiZj ! Ising spin glass, defines interesting prob-

lem to be solved (as bitstring energies) more on next slides

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
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even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
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a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
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induces	bit-hopping	in	the	Hamming/Hilbert	space	

The	idea	is	to	dial	this	parameter	to	land	in	the	global	minimum	(i.e.	the	
soluOon)	of	some	“problem	space”	described	by	J,h:	



•Thermal	tunnelling	is	fast	over	broad	shallow	potenOals	(Quantum	
“tunnelling”	is	exponenOally	slow)		

•Quantum	Tunnelling	is	fast	through	tall	thin	potenOals	(Thermal	“tunnelling”	
is	exponenOally	slow	—	Boltzmann	suppression)		
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Thermal	(classical)	and	Quantum	Annealing	are	complementary:
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Hence	hybrid	approach	to	Quantum	Annealing	can	be	useful	depending	on	the	
soluAon	landscape:	



More	specifically:	thermal	annealing	uses	Metropolis	algorithm:	accept	
random													flips	with	probability		
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Quantum	tunnelling	in	QFT	happens	with	probability																																															
so	by	contrast	it	can	be	operaAve	for	tall	barriers	if	they	are	made	thin	
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Simple	examples	of	Ising	encodings



•Example	1:	how	many	verOces	on	a	graph	can	we	colour	so	that	none	touch?	NP-hard	
problem	(from	N.Chancellor).

Example of Ising problem mapping ?

Have:
I Binary variables Zi 2 {�1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
P

i hiZi +
P

j>i Ji ,jZiZj

Want:
I Maximum independent set: how many vertexes on a graph

can we colour so none touch? ! NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj !
penalizes colouring (Z = 1) adacent vertexes

2. Add ��Zi to reward coloured vertexes (0 < � < 1)
?
Taken from the notes of a physics level 3 computing project I wrote, full

notes at: http://nicholas-chancellor.me/QOpt project final.pdf

•Let	non-coloured	verOces	have																						and	coloured	ones	have																				.
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•Add	a	reward	for	every	coloured	vertex,	and	for	each	link	between	verOces	i,j	we	add	a	
penalty	if	there	are	two	+1	eigenvalues:
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Encoding	network	problems	in	a	general	Ising	model



•Example	2:	N^2	students	are	to	sit	an	exam	in	a	square	room	with	NxN	desks	1.5m	apart.	
half	the	students	(A)	have	a	virus	while	half	of	them	(B)	do	not.	How	can	they	be	arranged	
to	minimise	the	number	of	ill	students	that	are	less	than	2m	from	healthy	students?	

•Call	the	eigenvalue	of	A	==	+1	and	that	of	B	==	-1.	That	is	if	I	measure								at	a	point	to	have	
value	+1	then	I	conclude	that	I	should	put	an	ill	person	there,	and	vice-versa.		

•There	are	N^2		spins																							arranged	in	rows	and	columns.	I	do	not	care	if	A>=<A	or	
B>=<B,	but	if	A>=<B	then	I	put	a	penalty	of	+2	on	the	Hamiltonian	(ferromagneOc	coupling).	
So	…		

•Finally	I	need	to	apply	the	constraint	that	#A	=	#B:	
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These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,
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�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:
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it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:
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2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.
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introduced in [47]. That is for every position ` we add to the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is represented by the position ↵` of the frustrated domain wall. Conversely
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In terms of Jij and hi, adding the full set of Ising-chain Hamiltonians given by Eq.(12) corresponds to
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and an h that is independent of `,

h(chain)
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This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
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This yields an additional contribution to the h which is also independent of `: that is for all ` we have
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•Example	2	done	with	classical	thermal	annealing	using	the	Metropolis	algorithm.	Note	this	
represents	a	search	over																																		configuraOons:		

•Importantly	the	constraint	hamiltonian	cannot	be	too	big	otherwise	the	hills	are	too	high	
and	it	freezes	too	early.	This	makes	the	process	require	a	(polynomial	sized)	bit	of		“thermal	
tuning”.
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•In	principle	this	could	be	done	more	easily	on	a	quantum	annealer	as	the	constraints	could	
be	high	and	it	would	sOll	work.	

•	To	do	this	we	would	simply	fill	h	and	J	and	call	the	quantum	annealer	from	python	as	
follows:		

•“response”	is	a	list	of	[+1,-1,+1,+1	…..]	spins	ordered	by	energy	

•However	the	architecture	(connecOvity	of	J,h)	is	limited.	(Later)



A	toy	field-theory	problem:	find	classical	
tunnelling	soluAons	in	QFT



•We	think	of	the	general	Ising	model	as	a	“universal	QFT	computer”	

•	Simple	problem	to	demonstrate	encoding	QFT	—	quantum	tunnelling	in	a	scalar	theory	

•Advantage	1:	easy	to	prepare	the	iniOal	state	(this	non-perturbaOve	process	is	much	easier	than	
preparing	scatering	states).	

•Advantage	2:	we	could	in	principle	observe	genuine	tunnelling	in	the	annealer	rather	than	just	
simulate	it.	

•Advantage	3:	the	system	is	dissipaOve	(reaches	a	ground	state	and	then	tunnels:	we	do	not	need	
very	short	nano-sec	Omes	to	preserve	coherence)



II. SET-UP OF A SIMPLE PROBLEM

A useful potential to focus on is the following quartic one:

V (�) =
�

8
(�2 � v2)2 +

✏

2v
(�� v) . (1)

The potential is shown in Fig.1. On the left we show the “thick-wall” regime where ✏ is large. This limit is when the
barrier is close to disappearing (or has disappeared altogether) and the walls become comparable in size to the bubble
itself. For numerics we choose v = � = 1 and ✏ = 0.3. The opposite “thin-wall” regime (for which we choose ✏ = 0.01)
is the limit in which ✏ is small and is approximately the difference in vacuum energy density between the false and
true minima.

We are interested in the situation where the system starts in the false vacuum, and our objective is to study the
rate per unit volume of tunnelling out of it. The analytic calculation of this rate is a classic problem, but it is worth
briefly recapping it in order to recast the result in a form that can easily be compared with the results from a quantum
simulation. It proceeds as follows.

First let us remove the extraneous constant term by working with U(�) = V (�) � V (�+), which has U(�+) = 0.
Using the well-known technique of [42–45], the bubble profile is given by finding a “bounce solution” to the following
differential equation:

d2�

d⇢2
+

c

⇢

d�

d⇢
= U 0 , (2)

where in four dimensions, c takes the value 2 or 3 for a finite temperature O(3) symmetric bubble, or a purely quantum
tunnelling O(4) symmetric instanton, respectively. The required “bounce” is subject to the boundary condition that
d�/d⇢ = 0 as ⇢ ! 0,1, which determines the starting value �(0), which is the field-value at the centre of the radially
symmetric bubble or instanton (also called the escape-point). The resulting �(⇢) profile for our particular choice of
parameters is shown in Fig. 2.

Once such a solution is determined, the tunnelling rate per unit volume can be estimated from its classical action:

�4 = A4 e
�S4[�] ,

�3 = A3 Te
�S3[�]/T , (3)

respectively. The quantum determinant prefactors A4, A3 are notoriously difficult to calculate, but for our purposes
it will be sufficient to focus on the influence of the classical action.

The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�a4/3

p
3. Defining ⇢ =

p
2/3(1� ✏/✏0), the location of the minima is
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v
=

1 + ⇢p
3

+O(⇢2) ,

��
v

= � 2p
3
+O(⇢2) . (4)

Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:

S4 =
3⇢

�
S0
4 ; S0

4 = 91

S3 =
3a⇢3/2

�1/2
S0
3 ; S0

3 = 19.4 (5)

The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:

S4 =
27⇡2S4

1

2✏3
; S3 =

16⇡3S3
1

3✏2
. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
this terminology.
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Figure 1: The thick-wall potential left (with ✏ = 0.3, and true and false minima at �� = �1.12542 and �+ = 0.786483
respectively), and thin-wall potential right (with ✏ = 0.01).

Figure 2: Solutions for the thick- and thin-wall potentials. The thin-wall solution computed using the hybrid quantum-classical
techniques as discussed later is overlaid on the right panel.

I. INTRODUCTION

There has been increasing interest in the possibility of simulating Quantum Field Theory (QFT) on quantum
computers [1], with the development of efficient algorithms to compute scattering probabilities in simple theories of
scalars and fermions [2–17]. In particular it is known that by latticizing field theories, quantum computers should
be able to compute scattering probabilities in QFTs with a run time that is polynomial in the desired precision, and
in principle to a precision that is not bounded by the limits of perturbation theory. However a particularly difficult
aspect of this programme is the preparation of scattering states [4–6, 8, 9, 14–17], with several works having proposed
a hybrid classical/quantum approach to solving this problem [11, 17–19]. A complementary approach is to map field
theory equations to discrete quantum walks [20–23] which can be simulated on a universal quantum computer.

In this paper we point out that certain nonperturbative quantum processes do not suffer from this difficulty, and
lend themselves much more readily to study on quantum computers in the short term. These are the tunnelling and
related processes, which are of fundamental importance for the explanation of quantum mechanical and quantum field
theoretical phenomena, for example transmission rates of electron microsopes, first-order phase transitions during
baryogenesis, or the potential initiation of stochastic gravitational wave spectra in the early Universe and many more.

Typically in tunnelling, the system begins in a false vacuum state that is non-dynamical and virtually trivial. The
initial state can be very long lived, with tunnelling to a lower “true” vacuum state taking place via non-perturbative
instanton configurations. In principle in such a process, the confinement of the initial state to a false vacuum prepares
the state for us, so that the analytically straighforward perturbative phenomena are paradoxically the quantum
computationally more difficult ones.

As opposed to quantum computing realised by a series of discrete “gate” operations, quantum annealers [24, 25]
perform continuous time quantum computations, and therefore they are well-suited to the study of tunnelling problems
by direct simulation (although our discussion could ultimately be adapted to gate-model quantum computers as well)
[26–36]. In particular these devices, produced by D-Wave Systems [37], can be seeded with initial conditions using the
“reverse annealing” feature,[38] allowing the simulation of dynamics. In contrast with the quantum-gate devices, they
are already quite large, 2048 qubits in the current generation, with work ongoing to develop much more connected 5000
qubit machines. Moreover they operate in a dissipative rather than fully coherent regime, which is likely to be realistic
for many real theories in which there are interactions with matter. In the present context this would be relevant for
studies of so-called thermal tunnelling rather than (or in addition to) quantum tunnelling. D-Wave devices have been
able successfully to simulate condensed matter systems, sometimes showing advantages over classical counterparts
[39–41].

The main objective of this work is to demonstrate how a field theory problem can be successfully encoded on a
quantum annealing device, and to do this we will focus on the classic problem of obtaining tunnelling rates for a
system stuck in a metastable minimum (a.k.a. false vacuum).
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•A	system	trapped	in	the	false	vacuum	will	decay	by	forming	bubbles	…

Thick	wall	situaOon Thin	wall	situaOon
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The potential is shown in Fig.1. On the left we show the “thick-wall” regime where ✏ is large. This limit is when the
barrier is close to disappearing (or has disappeared altogether) and the walls become comparable in size to the bubble
itself. For numerics we choose v = � = 1 and ✏ = 0.3. The opposite “thin-wall” regime (for which we choose ✏ = 0.01)
is the limit in which ✏ is small and is approximately the difference in vacuum energy density between the false and
true minima.

We are interested in the situation where the system starts in the false vacuum, and our objective is to study the
rate per unit volume of tunnelling out of it. The analytic calculation of this rate is a classic problem, but it is worth
briefly recapping it in order to recast the result in a form that can easily be compared with the results from a quantum
simulation. It proceeds as follows.

First let us remove the extraneous constant term by working with U(�) = V (�) � V (�+), which has U(�+) = 0.
Using the well-known technique of [42–45], the bubble profile is given by finding a “bounce solution” to the following
differential equation:
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where in four dimensions, c takes the value 2 or 3 for a finite temperature O(3) symmetric bubble, or a purely quantum
tunnelling O(4) symmetric instanton, respectively. The required “bounce” is subject to the boundary condition that
d�/d⇢ = 0 as ⇢ ! 0,1, which determines the starting value �(0), which is the field-value at the centre of the radially
symmetric bubble or instanton (also called the escape-point). The resulting �(⇢) profile for our particular choice of
parameters is shown in Fig. 2.

Once such a solution is determined, the tunnelling rate per unit volume can be estimated from its classical action:

�4 = A4 e
�S4[�] ,

�3 = A3 Te
�S3[�]/T , (3)

respectively. The quantum determinant prefactors A4, A3 are notoriously difficult to calculate, but for our purposes
it will be sufficient to focus on the influence of the classical action.

The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�a4/3
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Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:
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The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:

S4 =
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2✏3
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. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
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•The	analyOc	result	for	the	tunnelling	rate	was	worked	out	in	several	
famous	papers	by	Callan,	Coleman,	de	Luccia	and	Linde		

•Decay	rate	per	unit	volume	is	given	by	the	Euclidean	acOons	of	the	
O(4)	or	O(3)	symmetric	“bounce”	soluOon	(for	instanton	or	thermal	
resp):	
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•Normally	soluOon	found	by	solving	Euler-Lagrange	equaOons	with	boundary	condiOons:
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value corresponds to ✏0 = 2�a4/3

p
3. Defining ⇢ =

p
2/3(1� ✏/✏0), the location of the minima is

�+

v
=

1 + ⇢p
3

+O(⇢2) ,

��
v

= � 2p
3
+O(⇢2) . (4)

Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:
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The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:
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1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
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Figure 1: The thick-wall potential left (with ✏ = 0.3, and true and false minima at �� = �1.12542 and �+ = 0.786483
respectively), and thin-wall potential right (with ✏ = 0.01).

Figure 2: Solutions for the thick- and thin-wall potentials. The thin-wall solution computed using the hybrid quantum-classical
techniques as discussed later is overlaid on the right panel.

I. INTRODUCTION

There has been increasing interest in the possibility of simulating Quantum Field Theory (QFT) on quantum
computers [1], with the development of efficient algorithms to compute scattering probabilities in simple theories of
scalars and fermions [2–17]. In particular it is known that by latticizing field theories, quantum computers should
be able to compute scattering probabilities in QFTs with a run time that is polynomial in the desired precision, and
in principle to a precision that is not bounded by the limits of perturbation theory. However a particularly difficult
aspect of this programme is the preparation of scattering states [4–6, 8, 9, 14–17], with several works having proposed
a hybrid classical/quantum approach to solving this problem [11, 17–19]. A complementary approach is to map field
theory equations to discrete quantum walks [20–23] which can be simulated on a universal quantum computer.

In this paper we point out that certain nonperturbative quantum processes do not suffer from this difficulty, and
lend themselves much more readily to study on quantum computers in the short term. These are the tunnelling and
related processes, which are of fundamental importance for the explanation of quantum mechanical and quantum field
theoretical phenomena, for example transmission rates of electron microsopes, first-order phase transitions during
baryogenesis, or the potential initiation of stochastic gravitational wave spectra in the early Universe and many more.

Typically in tunnelling, the system begins in a false vacuum state that is non-dynamical and virtually trivial. The
initial state can be very long lived, with tunnelling to a lower “true” vacuum state taking place via non-perturbative
instanton configurations. In principle in such a process, the confinement of the initial state to a false vacuum prepares
the state for us, so that the analytically straighforward perturbative phenomena are paradoxically the quantum
computationally more difficult ones.

As opposed to quantum computing realised by a series of discrete “gate” operations, quantum annealers [24, 25]
perform continuous time quantum computations, and therefore they are well-suited to the study of tunnelling problems
by direct simulation (although our discussion could ultimately be adapted to gate-model quantum computers as well)
[26–36]. In particular these devices, produced by D-Wave Systems [37], can be seeded with initial conditions using the
“reverse annealing” feature,[38] allowing the simulation of dynamics. In contrast with the quantum-gate devices, they
are already quite large, 2048 qubits in the current generation, with work ongoing to develop much more connected 5000
qubit machines. Moreover they operate in a dissipative rather than fully coherent regime, which is likely to be realistic
for many real theories in which there are interactions with matter. In the present context this would be relevant for
studies of so-called thermal tunnelling rather than (or in addition to) quantum tunnelling. D-Wave devices have been
able successfully to simulate condensed matter systems, sometimes showing advantages over classical counterparts
[39–41].

The main objective of this work is to demonstrate how a field theory problem can be successfully encoded on a
quantum annealing device, and to do this we will focus on the classic problem of obtaining tunnelling rates for a
system stuck in a metastable minimum (a.k.a. false vacuum).
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II. SET-UP OF A SIMPLE PROBLEM

A useful potential to focus on is the following quartic one:

V (�) =
�

8
(�2 � v2)2 +

✏

2v
(�� v) . (1)

The potential is shown in Fig.1. On the left we show the “thick-wall” regime where ✏ is large. This limit is when the
barrier is close to disappearing (or has disappeared altogether) and the walls become comparable in size to the bubble
itself. For numerics we choose v = � = 1 and ✏ = 0.3. The opposite “thin-wall” regime (for which we choose ✏ = 0.01)
is the limit in which ✏ is small and is approximately the difference in vacuum energy density between the false and
true minima.

We are interested in the situation where the system starts in the false vacuum, and our objective is to study the
rate per unit volume of tunnelling out of it. The analytic calculation of this rate is a classic problem, but it is worth
briefly recapping it in order to recast the result in a form that can easily be compared with the results from a quantum
simulation. It proceeds as follows.

First let us remove the extraneous constant term by working with U(�) = V (�) � V (�+), which has U(�+) = 0.
Using the well-known technique of [42–45], the bubble profile is given by finding a “bounce solution” to the following
differential equation:

d2�

d⇢2
+

c

⇢

d�

d⇢
= U 0 , (2)

where in four dimensions, c takes the value 2 or 3 for a finite temperature O(3) symmetric bubble, or a purely quantum
tunnelling O(4) symmetric instanton, respectively. The required “bounce” is subject to the boundary condition that
d�/d⇢ = 0 as ⇢ ! 0,1, which determines the starting value �(0), which is the field-value at the centre of the radially
symmetric bubble or instanton (also called the escape-point). The resulting �(⇢) profile for our particular choice of
parameters is shown in Fig. 2.

Once such a solution is determined, the tunnelling rate per unit volume can be estimated from its classical action:

�4 = A4 e
�S4[�] ,

�3 = A3 Te
�S3[�]/T , (3)

respectively. The quantum determinant prefactors A4, A3 are notoriously difficult to calculate, but for our purposes
it will be sufficient to focus on the influence of the classical action.

The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�v4/3
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3
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Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:

S4 =
3⇠

�
S0
4 ; S0

4 = 91

S3 =
3v⇠3/2

�1/2
S0
3 ; S0

3 = 19.4 (5)

The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:

S4 =
27⇡2S4

1

2✏3
; S3 =

16⇡3S3
1

3✏2
. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
this terminology.
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The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�a4/3

p
3. Defining ⇢ =

p
2/3(1� ✏/✏0), the location of the minima is
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��
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Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:
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The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:
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3✏2
. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
this terminology.
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In	principle	if	we	can	encode	this	field	theory	on	a	quantum	annealer,	we	will	be	able	
to	vary	the	parameters	and	perform	a	tunnelling	experiment.	As	a	first	step,	we	will	
determine	S1:	finding	the	extremum	of	the	acCon	is	a	quasi-convex	problem	(convex	
in	a	finite	box).



This	means	for	the																		acOon	we	will	atempt	to	minimise	the	Euclidean	acOon	holding	
the	endpoints	fixed	at	+/-	v:

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].

4



Encoding	a	scalar	QFT	on	an	Ising	model



First	encode						by	discreOsing	its	value	using	N	qubits:
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assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:
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Represent	it	as	a	point	on	a	spin	chain	==	domain	wall	encoding	(Chancellor):

-1 -1 -1 -1 -1 -1 -1+1+1+1+1+1+1

We	can	translate	any	spin	chain	to	a	field	value	using	
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N
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• Chancellor	
• SAA,	Chancellor	and	Spannowsky,	arXiv:2003.07374.	



For	this	to	work	as	a	consistent	encoding	we	have	to	avoid	e.g.

-1 -1 -1 -1 -1 -1+1+1+1+1+1+1+1
This	is	the	domain-wall	encoding.	Begin	in	the	Ising	model	with	a	ferromagneOc	
interacOon	that	favours	as	few	flips	as	possible,	but	frustrate	at	least	one	by	having	the	
endpoints	pinned	at	-1	…	+1.
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Pins	the	end	spins	at	opposing	values penalty	for	different	adjacent	spin

where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian

H(chain)
` = �⇤

0

@
N�1X

j=1

�Z
`N+j�

Z
`N+j+1 � �Z

`N+1 + �Z
`N+N

1

A . (12)

As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is represented by the position ↵` of the frustrated domain wall. Conversely
the field value at the `’th position can be found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �Z

`N+ji , (14)

which only receives a contribution from frustrated spin position with j = ↵`. For later, it is useful to note that this
is equivalent to

�(⇢`) = �0 +
N⇠

2
� ⇠

2

NX

j=1

h�Z
`N+ji . (15)

In terms of Jij and hi, adding the full set of Ising-chain Hamiltonians given by Eq.(12) corresponds to

J (chain)
`N+i,mN+j = �⇤

2
�`m

0
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0 1
1 0 1

1 0

. . .
0 1
1 0

1
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ij

, (16)

and an h that is independent of `,

h(chain)
`N+j = ⇤ (�j1 � �jN ) . (17)

This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
which gives entirely localised contributions to the Hamiltonian. The value of U(�(⇢`)) at each point follows directly
from Eq.(14):

U(�(⇢`)) =
1

2

N�1X

j=1

U(�0 + j⇠) h�Z
`N+j+1 � �Z

`N+ji . (18)

This yields an additional contribution to the h which is also independent of `: that is for all ` we have
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⌫
2 (U(�0 + (j � 1)⇠)� U(�0 + j⇠)) ; j < N
⌫
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(19)

It can also be convenient to write this in terms of U derivatives as
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2 U 0(�0 + j⇠) ; j < N
⌫
2U(�0 + (N � 1)⇠) ; j = N ,

(20)
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where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form
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and an h that is independent of `,
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This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
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This	is	the	domain-wall	encoding.	Begin	in	the	Ising	model	with	a	ferromagneOc	
interacOon	that	favours	as	few	flips	as	possible,	but	frustrate	at	least	one	by	having	the	
endpoints	pinned	at	-1	…	+1.

For	this	to	work	as	a	consistent	encoding	we	have	to	avoid	e.g.
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Next	add	the	discreOsed	radial	spaceOme	coordinate:	

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X
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Z
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Z
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Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian
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This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
which gives entirely localised contributions to the Hamiltonian. The value of U(�(⇢`)) at each point follows directly
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Everything	done	so	far	is	then	trivially	extended	in	the	l		spaceOme	index:
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and an h that is independent of `,
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This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
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Then	kineOc	terms	are	as	follows:

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as

SKE ⌘
Z �⇢

0
d⇢

1

2
�̇2 = lim

M!1

M�1X

`=1

1

2⌫
(�(⇢`+1)� �(⇢`))

2 , (21)

where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find
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Hence the bilinear terms receive the additional contribution:

J
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`N+i,mN+j =

⇠2

8⌫

0

B@

1 �1
�1 2 �1

�1 2 �1

. . .
�1 2 �1

�1 1

1

CA

`m

, (23)

or in other words

J (QFT)
`N+i,mN+j =
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8⌫

�
2�`m � �`(m+1) � �(`+1)m

�
. (24)

(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.
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splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian

H(chain)
` = �⇤

0

@
N�1X

j=1

�Z
`N+j�

Z
`N+j+1 � �Z

`N+1 + �Z
`N+N

1

A . (12)

As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is represented by the position ↵` of the frustrated domain wall. Conversely
the field value at the `’th position can be found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �Z

`N+ji , (14)

which only receives a contribution from frustrated spin position with j = ↵`. For later, it is useful to note that this
is equivalent to

�(⇢`) = �0 +
N⇠

2
� ⇠

2

NX

j=1

h�Z
`N+ji . (15)

In terms of Jij and hi, adding the full set of Ising-chain Hamiltonians given by Eq.(12) corresponds to

J (chain)
`N+i,mN+j = �⇤

2
�`m
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, (16)

and an h that is independent of `,

h(chain)
`N+j = ⇤ (�j1 � �jN ) . (17)

This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
which gives entirely localised contributions to the Hamiltonian. The value of U(�(⇢`)) at each point follows directly
from Eq.(14):

U(�(⇢`)) =
1

2

N�1X

j=1

U(�0 + j⇠) h�Z
`N+j+1 � �Z

`N+ji . (18)

This yields an additional contribution to the h which is also independent of `: that is for all ` we have

h(QFT)
N`+j =

(
⌫
2 (U(�0 + (j � 1)⇠)� U(�0 + j⇠)) ; j < N
⌫
2U(�0 + (N � 1)⇠) ; j = N

(19)

It can also be convenient to write this in terms of U derivatives as

h(QFT)
N`+j =

(
� ⌫⇠

2 U 0(�0 + j⇠) ; j < N
⌫
2U(�0 + (N � 1)⇠) ; j = N ,

(20)

5
Then	kineOc	terms	are	as	follows:

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as

SKE ⌘
Z �⇢

0
d⇢

1

2
�̇2 = lim

M!1

M�1X

`=1

1

2⌫
(�(⇢`+1)� �(⇢`))

2 , (21)

where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find

SKE =
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i
.

Hence the bilinear terms receive the additional contribution:

J
(QFT)
`N+i,mN+j =

⇠2
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, (23)

or in other words

J (QFT)
`N+i,mN+j =

⇠2

8⌫

�
2�`m � �`(m+1) � �(`+1)m

�
. (24)

(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.
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Everything	done	so	far	is	then	trivially	extended	in	the	l		spaceOme	index:



Next	we	need	to	impose	the	physical	boundary	condiOon	with:	

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as
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2 , (21)

where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find

SKE =
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Hence the bilinear terms receive the additional contribution:

J
(QFT)
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or in other words

J (QFT)
`N+i,mN+j =

⇠2

8⌫

�
2�`m � �`(m+1) � �(`+1)m

�
. (24)

(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.

6

We	can	think	of	these	as	just	boundary	mass-term	potenOals	in	U:	

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as
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where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find
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Hence the bilinear terms receive the additional contribution:
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or in other words
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(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.

6

Finally	add	everything	together!

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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Results	for	thin	wall	limit



Too	hot

Can	solve	classical	simulated	annealing	with	the	Metropolis	algorithm.	Again	have	to	

be	careful	how	we	set	the	temperatures	and	parameters:



Too	cold



Just	right	(two	stage	annealing	process)



Same	result	on	Dwave	using	hybrid	quantum/classical	Kerberos	annealer	(It	finds	best	

samples	of	parallelised	tabu	search	+	simulated	annealing	+	D-Wave	subproblem	

sampling)		Figure 1: The thick-wall potential left (with ✏ = 0.3, and true and false minima at �� = �1.12542 and �+ = 0.786483
respectively), and thin-wall potential right (with ✏ = 0.01).

Figure 2: Solutions for the thick- and thin-wall potentials. The thin-wall solution computed using the hybrid quantum-classical
techniques as discussed later is overlaid on the right panel.

I. INTRODUCTION

There has been increasing interest in the possibility of simulating Quantum Field Theory (QFT) on quantum
computers [1], with the development of efficient algorithms to compute scattering probabilities in simple theories of
scalars and fermions [2–17]. In particular it is known that by latticizing field theories, quantum computers should
be able to compute scattering probabilities in QFTs with a run time that is polynomial in the desired precision, and
in principle to a precision that is not bounded by the limits of perturbation theory. However a particularly difficult
aspect of this programme is the preparation of scattering states [4–6, 8, 9, 14–17], with several works having proposed
a hybrid classical/quantum approach to solving this problem [11, 17–19]. A complementary approach is to map field
theory equations to discrete quantum walks [20–23] which can be simulated on a universal quantum computer.

In this paper we point out that certain nonperturbative quantum processes do not suffer from this difficulty, and
lend themselves much more readily to study on quantum computers in the short term. These are the tunnelling and
related processes, which are of fundamental importance for the explanation of quantum mechanical and quantum field
theoretical phenomena, for example transmission rates of electron microsopes, first-order phase transitions during
baryogenesis, or the potential initiation of stochastic gravitational wave spectra in the early Universe and many more.

Typically in tunnelling, the system begins in a false vacuum state that is non-dynamical and virtually trivial. The
initial state can be very long lived, with tunnelling to a lower “true” vacuum state taking place via non-perturbative
instanton configurations. In principle in such a process, the confinement of the initial state to a false vacuum prepares
the state for us, so that the analytically straighforward perturbative phenomena are paradoxically the quantum
computationally more difficult ones.

As opposed to quantum computing realised by a series of discrete “gate” operations, quantum annealers [24, 25]
perform continuous time quantum computations, and therefore they are well-suited to the study of tunnelling problems
by direct simulation (although our discussion could ultimately be adapted to gate-model quantum computers as well)
[26–36]. In particular these devices, produced by D-Wave Systems [37], can be seeded with initial conditions using the
“reverse annealing” feature,[38] allowing the simulation of dynamics. In contrast with the quantum-gate devices, they
are already quite large, 2048 qubits in the current generation, with work ongoing to develop much more connected 5000
qubit machines. Moreover they operate in a dissipative rather than fully coherent regime, which is likely to be realistic
for many real theories in which there are interactions with matter. In the present context this would be relevant for
studies of so-called thermal tunnelling rather than (or in addition to) quantum tunnelling. D-Wave devices have been
able successfully to simulate condensed matter systems, sometimes showing advantages over classical counterparts
[39–41].

The main objective of this work is to demonstrate how a field theory problem can be successfully encoded on a
quantum annealing device, and to do this we will focus on the classic problem of obtaining tunnelling rates for a
system stuck in a metastable minimum (a.k.a. false vacuum).

2

Notably	the	Kerberos	sampler	is	much	more	robust	than	pure	simulated	annealing.	

But	this	proves	the	principle:	we	can	encode	a	pure	field	theory	potenOal	on	the	

annealer,	so	we	can	experiment	with	QFT	tunnelling



Addendum	to	this	part:	The	“instanton”	soluOon	is	of	course	a	classical	object.	We	

have	not	yet	done	any	actual	quantum	tunnelling.	



Quantum	Tunnelling:	the	Schrodinger	eq.



Why	did	we	not	use	a	pure	Quantum	annealer?	The	connecOvity	is	not	general	

enough	for	this	problem	(in	parOcular	encoding	the	kineOc	terms):	it	has	a	Chimera	

structure	…

But	using	a	“minor	embedding”	we	can	currently	achieve	the	equivalent	of	a	~	200	

qubit	general	Ising	model.		This	is	enough	for	the	zero	space-dimension	problem.



So	we	should	be	able	to	do	d=1	field	theory	(aka	Quantum	Mechanics).	That	is	we	set	

up	the	annealer	with	ONLY	a	potenAal	and	NO	dynamics	at	all.
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-0.2

0.2

0.4

0.6

If	it	is	quantum	then	we	should	find	the	c=0	tunnelling	corresponding	to	

Note that we do not use m = v
p
� at the minimum. In fact the kinetic term is better as the KG

one without the 1/m. That would give

T ⇡ e�~�1 4
p

�
3 v3

. (15)

The alternative method is to use d = 0 dimensional field theory. That is we write the path
integral for the non-relativistic propagation as the usual worldline integral:

� =

Z x(1)=xf

x(0)=xi

Dx e�i~�1 R 1
0 dt( 1

2mẋ2�V ), (16)

where the path is between fixed points xi inside and xf outside the barrier. Of course the integral
is dominated by the stationary phase contribution, but in order to evaluate it we deform t in the
complex t plane by making a Wick rotation t ! �it:

�E =

Z �f

�i

D� e
�~�1 R

dt
⇣

m�̇2

2 +U(�)
⌘

. (17)

This describes the propagator from xi to the boundary, but we are interested in the exponentially
decaying part. This is found by taking the bounce solution for xcl with endpoints at x+, xe. That
is

�SE = 0 =) mẍ = Vx, (18)

which gives the usual classical solution

ẋcl = ±

p
2 (U � E) /m, (19)

with stationary value where U = E, and then
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mẋ2

2
+ U(x)� E

◆
(20)
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Letting x = xcl + �x we then have
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with the decay rate going as �2
E , matching the SE result.

Now let us see how we can test the decay rate in a quantum annealer. The assumption is
that the transverse field component of the annealer will induce an effective ẋ2 term. Therefore we
construct a d = 0 QFT with a given U . The object of interest is
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However we don’t know the value of ~ and we also don’t know the effective m. Hence we can
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Implementation and observation of false vacuum
decay on a quantum annealer

1 Decay in d = 0 field theory

For practical reasons that will be discussed later we will consider the decay from the potential

U(�) =
3

4
tanh2 ��

k(t)

2
sech2 (�� v) , (1)

where c, v are constants while � is time-dependent, and x(t) is the field. Note that as we are now
doing quantum mechanics we have replaced � with x, but at leading order it amounts to a d = 0
field theory. The ↵ term provides a potential-well around x = 0 which allows the system to begin
as a bound-state there. (Note that ↵ can always be set to one by rescaling x.) The �-term will then
be turned on adiabatically during the anneal in order to allow tunnelling into the global minimum
that forms at x = v. This potential, which is plotted in Fig.1 for ↵ = 1, � = 2, has several nice
properties for our purposes. One is that each individual well has the Poschl-Teller sech2x form,
which can be solved. Moreover the potentials around each minimum decay exponentially. This
makes it possible to “turn on” the global true minimum without significantly changing the profile
of the false minimum. Other useful features of this choice will be discussed below when they
become relevant.

Let us first discuss the initial state when � = 0. Quantum mechanics in such a potential can
be performed using factorisation and ladder-operator methods (see for example [2]). We are most
interested in the ground state which is

 0(x) =

r
↵

⇡
sech

1
2↵x. (2)

This state, which is our ideal starting state, has energy

E0 =
~2↵2

4m
. (3)

Fig. 1: The double-Poschl-Teller potential. The system is initialised around x = 0 and allowed to
decay to the true minimum.
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For practical reasons that will be discussed later we will consider the decay from the potential

U(�) =
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4
tanh2 ��

k(t)
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sech2 (�� v) , (1)

where c, v are constants while � is time-dependent, and x(t) is the field. Note that as we are now
doing quantum mechanics we have replaced � with x, but at leading order it amounts to a d = 0
field theory. The ↵ term provides a potential-well around x = 0 which allows the system to begin
as a bound-state there. (Note that ↵ can always be set to one by rescaling x.) The �-term will then
be turned on adiabatically during the anneal in order to allow tunnelling into the global minimum
that forms at x = v. This potential, which is plotted in Fig.1 for ↵ = 1, � = 2, has several nice
properties for our purposes. One is that each individual well has the Poschl-Teller sech2x form,
which can be solved. Moreover the potentials around each minimum decay exponentially. This
makes it possible to “turn on” the global true minimum without significantly changing the profile
of the false minimum. Other useful features of this choice will be discussed below when they
become relevant.

Let us first discuss the initial state when � = 0. Quantum mechanics in such a potential can
be performed using factorisation and ladder-operator methods (see for example [2]). We are most
interested in the ground state which is

 0(x) =
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⇡
sech

1
2↵x. (2)

This state, which is our ideal starting state, has energy

E0 =
~2↵2
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Fig. 1: The double-Poschl-Teller potential. The system is initialised around x = 0 and allowed to
decay to the true minimum.
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In	the	worldline	formalism	we	get	the	usual	WKB	like	decay	rate;	

that it has been possible to implement instanton pro-
cesses in a freely chosen quantum field theory and observe
such phenomena experimentally.

II. SET-UP FOR FALSE VACUUM DECAY

It will be convenient for several practical reasons to
set-up a physical system on the annealer that recreates
quantum decay in a potential of the form

U(�) =
3

4
tanh2 �� k(t) sech2 (c(�� v)) , (1)

where c, v are constants while k is time-dependent, and
�(t) is the field. Note that � is the dimensionless object
that we will define on the annealer. When required we
will convert it into a dimensionful field ⌘ by defining

� = ⌘/⌘0 , (2)

where ⌘0 is a constant. In the d = 1 field theory there
are of course no space dimensions, and at leading order
it is isomorphic to quantum mechanics (with � playing
the role of x). However the d = 1 field theory formalism
allows for particle creation and is the starting point for
generalisation to higher dimensions, as discussed in the
introduction.

The first term in U provides a potential-well around
� = 0 which in principle allows the system to begin as a
bound-state there. As mentioned this is one of the bene-
fits of annealers over discrete gate systems: in order first
to reach a ground state, a system has to dissipate. The
k-term will then be turned on adiabatically during the
anneal in order to allow tunnelling into the global mini-
mum that forms at � = v. For this study we shall mostly
take c = 1, so that the potential during the tunnelling
period will consist of equally sized potential wells. The
potential is plotted in Fig.1 for k = 1 and various values
of separation parameter v.

This function has several nice properties for our pur-
poses. One is that each individual well has the Pöschl-
Teller �sech2� form, which can be solved. Moreover
the potentials around each minimum decay exponentially.
This makes it possible to “turn on” the global true min-
imum by adjusting k without significantly altering the
profile of the potential around the false minimum (un-
like the more commonly considered case of quartic po-
tentials). Other useful features of this choice will be dis-
cussed below when they become relevant.

We will begin the system with k = 0, such that it
falls into a Pöschl-Teller ground state. Assuming that
the completion of the potential into a d = 1 field the-
ory ultimately corresponds to the Schrödinger equation,
the ground state (and its excited friends) in such a po-
tential can be determined using factorisation and ladder-
operator methods (see for example [30, 31]). In a theory
where

2m⌘20
~2 U = �(�+ 1) tanh2�, (3)

Figure 1: The double-Pöschl-Teller potential well for different
k and v. The system is initialised around � = 0 and allowed
to decay to the true minimum at � ⇡ v.

the bound states are given by Legendre polynomials of
the form Pµ

� (tanh �), and the ground state, P�
� (tanh �),

is given by

 0(�) = N0 sech�� , (4)

where the normalisation constant is

N
2
0 = ⇡� 1

2�(�+ 1/2)/�(�) .

This state, which is our idealised starting state, has en-
ergy

E0 =
~2�
2m⌘20

. (5)

We will not know a priori the value of

�
def
= ~2/2m⌘20

in the effective field theory induced on the annealer, and
estimating it will essentially constitute our calibration.
In order to do this we could for example multiply U by
a constant, ↵ say, and by trial-and-error find a value for
↵ that yielded a ground state wave function of the form
 0 = sech(�)/

p
⇡ corresponding to � = 1/2. According

to (3) that value of ↵ would be equal to �. However this is
demanding to do (in terms of annealer time), and it is not
always obvious which is the value of �. We will instead
determine an estimate for � in the effective field theory
by studying the ground state of the simple-harmonic-
oscillator (SHO) potential, and fitting the wave-function
to the ground state. Either way it is unavoidable that
one must also determine � as an empirical parameter.

Let us now consider the tunnelling into the global min-
imum once k is turned on. The expected decay rate can
be computed using instanton methods. In d = 1 dimen-
sional field theory this means writing the path integral
for the non-relativistic propagation of the physical field
⌘ = ⌘0� as a worldline integral:

h⌘i|⌘f i =

Z ⌘(T )=⌘f

⌘(0)=⌘i

D⌘ e�i~�1 R T
0 dt( 1

2m⌘̇2�(U�E0)), (6)

2

k ! 1, and turn on tunnelling for the rest of the anneal.
This configuration, in which we first allow the system to
settle into the groundstate, is forced on us by the quan-
tum properties of the annealer. Indeed if we were to start
the system at the bottom of the metastable minimum at
the origin and then simply turn on the transverse field,
it would tunnel very rapidly. This is because in a re-
verse anneal it begins classically with a pre-defined set of
�Z
i ’s. This implies that the initial wavefunction  (�) is a

position eigenstate (it is essentially a Dirac �-function),
containing superpositions of all energy eigenstates.

It is worth mentioning several moves that are required
to improve performance. For all our results we will us-
ing a minor-embedding on the Dwave annealer QPU, due
to its limited connectivity, with N = 200 qubits in our
effective Ising model (but obviously with more on the
physical machine due to the embedding). Performance
is improved by splitting the large number of reads into
smaller groups (of say 100) in order to reduce biasing
from each embedding. The states are re-initialised at the
bottom of the false vacuum in a classical state at the be-
ginning of each read. As mentioned one also has to be
careful to set the Ising chain parameters, namely ⇤,⇤0,
to be not much larger than the largest energy scale in
the problem. This is because as mentioned we wish to
avoid the annealer autoscaling the couplings to ĥ, Ĵ as
in (17). After such scaling, Ising chain parameters that
were very large, would imply couplings in the physical
potential that were very small. The effect of autoscal-
ing is actually an additional motivation for our favour-
ing of Pöschl-Teller potentials, because they go to a con-
stant at large field values and different � intervals do not
change the autoscaling: by contrast a quartic potential
would grow rapidly at large field values4. Conversely if
the Ising chain parameters are too small then the Ising
chain breaks and we no longer have a faithful represen-
tation of the field value. Such “wall-breaks” happen a
few percent of the time and can never be eliminated en-
tirely. Those results are simply discarded. Additionally
the minor-embedding itself (which ties qubits together in
a similar fashion to the Ising chain embedding in J) may
also fail. The parameters can usually be adjusted so that
these “chain-breaks” happen rarely however.

IV. RESULTS

A. Calibration on SHO ground states

We now turn to the results, and discuss the various
parameters and further interpretation as we proceed, be-

4 It is also worth mentioning that the D-Wave annealer does
provide the possibility of turning off auto-scaling (by setting
auto�scale = False) but the performance is reduced unless the
couplings are tuned precisely anyway.

Figure 5: Typical reverse anneal schedule. The anneal pa-
rameter s increases the transverse field, and there is an initial
period of stabilisation in the minimum at the origin. The h-
gain parameter is then turned on to introduce metastability
and induce tunnelling.

ginning by studying the system with no tunnelling. That
is we keep C(t) = C0 and set v to be very large, in or-
der to learn about the effective Planck’s constant, more
precisely the combination � = ~2/2m⌘20 . As mentioned
this amounts to our calibration of the experiment, and
to perform it in a systematic way, we will use the simple-
harmonic-oscillator (SHO). That is we take

U0(�) =


2
�2 . (25)

We show the result of 30K reads of the annealer with
 = 0.06 in Fig.6, presented as binned probability density
functions normalised to one. (In other words as N ! 1

this curve would be | |2). Note that the value of  is
chosen small enough to avoid autoscaling. For this run
we hold the annealer at sq = 0.7 for 75 µs (plus 5 µs of
ramp-up and 1 µs of ramp-down).

By inspecting this and similar curves one gains some
intuition about the behaviour of this system. First, apart
from some seemingly characteristic perturbation around
the peak it clearly appears to have reached the Gaussian
ground state, which is of the form

| |2 =
(/2�)

1
4

⇡
1
2

e�
p

/2� �2

, (26)

so we can reasonably conclude that for this choice of pa-
rameters 75 µs is long enough for the required dissipation.
Note that the ⌘0 parameter cancels in the /� ratio. Sec-
ondly, this curve leads to an approximate estimation of
� = 0.33. Choosing different physical couplings appears
to yield similar values of �, so not only do the wave-
functions have the correct shape but they also have the
correct functional dependence on . By contrast the re-
sult for the inferred value of � does depend on the interval

6

where																										is	something	we	must	measure.	e.g.	use	the	SHO	groundstate
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that it has been possible to implement instanton pro-
cesses in a freely chosen quantum field theory and observe
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where ⌘0 is a constant. In the d = 1 field theory there
are of course no space dimensions, and at leading order
it is isomorphic to quantum mechanics (with � playing
the role of x). However the d = 1 field theory formalism
allows for particle creation and is the starting point for
generalisation to higher dimensions, as discussed in the
introduction.

The first term in U provides a potential-well around
� = 0 which in principle allows the system to begin as a
bound-state there. As mentioned this is one of the bene-
fits of annealers over discrete gate systems: in order first
to reach a ground state, a system has to dissipate. The
k-term will then be turned on adiabatically during the
anneal in order to allow tunnelling into the global mini-
mum that forms at � = v. For this study we shall mostly
take c = 1, so that the potential during the tunnelling
period will consist of equally sized potential wells. The
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This makes it possible to “turn on” the global true min-
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profile of the potential around the false minimum (un-
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cussed below when they become relevant.

We will begin the system with k = 0, such that it
falls into a Pöschl-Teller ground state. Assuming that
the completion of the potential into a d = 1 field the-
ory ultimately corresponds to the Schrödinger equation,
the ground state (and its excited friends) in such a po-
tential can be determined using factorisation and ladder-
operator methods (see for example [30, 31]). In a theory
where
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Figure 1: The double-Pöschl-Teller potential well for different
k and v. The system is initialised around � = 0 and allowed
to decay to the true minimum at � ⇡ v.

the bound states are given by Legendre polynomials of
the form Pµ

� (tanh �), and the ground state, P�
� (tanh �),

is given by

 0(�) = N0 sech�� , (4)

where the normalisation constant is

N
2
0 = ⇡� 1

2�(�+ 1/2)/�(�) .

This state, which is our idealised starting state, has en-
ergy

E0 =
~2�
2m⌘20

. (5)

We will not know a priori the value of

�
def
= ~2/2m⌘20

in the effective field theory induced on the annealer, and
estimating it will essentially constitute our calibration.
In order to do this we could for example multiply U by
a constant, ↵ say, and by trial-and-error find a value for
↵ that yielded a ground state wave function of the form
 0 = sech(�)/

p
⇡ corresponding to � = 1/2. According

to (3) that value of ↵ would be equal to �. However this is
demanding to do (in terms of annealer time), and it is not
always obvious which is the value of �. We will instead
determine an estimate for � in the effective field theory
by studying the ground state of the simple-harmonic-
oscillator (SHO) potential, and fitting the wave-function
to the ground state. Either way it is unavoidable that
one must also determine � as an empirical parameter.

Let us now consider the tunnelling into the global min-
imum once k is turned on. The expected decay rate can
be computed using instanton methods. In d = 1 dimen-
sional field theory this means writing the path integral
for the non-relativistic propagation of the physical field
⌘ = ⌘0� as a worldline integral:

h⌘i|⌘f i =

Z ⌘(T )=⌘f

⌘(0)=⌘i

D⌘ e�i~�1 R T
0 dt( 1

2m⌘̇2�(U�E0)), (6)

2

where the path is between points ⌘i inside and ⌘f outside
the barrier and T is the time. As usual the integral is
dominated by the stationary phase contribution, but in
order to evaluate it efficiently we deform t in the complex
t plane by making a Wick rotation t ! �it and use the
Euclidean steepest-descent contour instead:

h⌘i|⌘f iE =

Z ⌘(T )=⌘f

⌘(0)=⌘i

D⌘ e
�~�1 R

dt
⇣

m⌘̇2

2 +U�E0

⌘

. (7)

This describes the propagator from ⌘i to the endpoint,
but we are most interested in the exponentially decay-
ing part. The steepest descent contour that determines
it corresponds to the classical solution of the Euclidean
equation of motion ⌘cl with endpoints at ⌘+, ⌘e, where ⌘e
is the escape point, namely the point where U = E0, with
the quantum fluctuations providing pre-factors. That is

�SE = 0 =) m⌘̈ = U⌘, (8)

which gives the usual classical solution

⌘̇cl = ±

p
2(U � E0)/m, (9)

corresponding to energy conservation for a ball rolling in
the inverted potential between turning points at ⌘+ and
⌘e. Substituting then gives the classical action

SE,cl =

Z ⌘e

⌘+

d⌘
p
2m(U � E0) , (10)

and letting ⌘ = ⌘cl + �⌘ yields a quantum prefactor;

h⌘i|⌘f iE =

Z
D�⌘ e

�~�1 R
dt

✓
m(⌘̇cl+�⌘̇)2

2 +U(⌘cl+�⌘)�E0

◆

,

= Ae�~�1SE,cl , (11)

with the decay rate � = |h⌘i|⌘f iE |2 becoming

� ⇡ e�2~�1SE,cl . (12)

In principle these solutions should then be matched on
to oscillating solutions at the turning points, but these
oscillating parts do not change the decay rate. Thus re-
gardless of the time T , the exponential decay in the am-
plitude between points either side of the barrier will be
dominated by this saddle point approximation, as one
would expect. As mentioned the d = 1 field theory is
isomorphic to the Schrödinger equation (SE) at leading
order and indeed the same result can be obtained us-
ing the WKB method. However the d = 1 system ac-
tually includes all the paraphernalia of field theory, in-
cluding loop corrections, particle pair production and so
forth. In principle then it presents a useful laboratory for
testing both perturbative and nonperturbative aspects of
quantum field theory, and future generalisation of our
discussion to higher dimensions could be performed very
straighforwardly by including discretised space derivative

Figure 2: The logarithm of the decay rate � (times by
� 1

2 ) versus the linear approximation in Eq.(14) (shown as
the dashed line) for � = 1. The barrier disappears completely
at v = 5/3.

terms. Only the limited dimensions and connectivity of
the annealer prevent us doing this.

How can we test this decay rate in a quantum annealer
directly? The assumption we will make is that the trans-
verse field component of the annealer induces an effec-
tive �̇2 term into any field theory we encode on it, with
some unknown coefficient. Therefore our method will be
to construct on the annealer a potential U as given in
Eq.(1) and, by observing its decay rates, test to see if
the annealer has indeed turned it into a d = 1 QFT. The
object of interest is therefore the exponent in the decay
rate:
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where we henceforth take c = 1. Obviously this inte-
gral becomes linear in v at large values, but a second
advantage of the Pöschl-Teller potential barrier is that it
remains so to a very good approximation, even for values
of v of order one, as shown in Fig.2:
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◆
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Thus we expect exponential decay with an exponent
falling linearly with v. Crucially this behaviour is quali-
tatively different from thermal tunneling which has little
dependence on the barrier width v. For that one would
instead expect to recover the Arrhenius equation, with
� ⇠ e�Ea/kT , where Ea is the activation energy 3.

3 This can be seen using the same techniques [7], but now the finite-
temperature field theory is genuinely Euclidean, with compact-
ified time having periodicity given by the temperature, namely
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Set	up	on	the	annealer:



Typical	“minor”	embedding	of	the	Ising	model	



Figure 3: The potential as seen by the Ising model on the
annealer, where we choose N = 200 qubits, and parameters
k = 1 and v = 5, c.f. the actual potential in Fig.1. Note the
large negative overall energy off-set due to the field theory
encoding, and the “dropped qubit” at � = �0.

where �ij is the Kronecker-�. These J terms contribute
zero to the Hamiltonian except at the location of the
domain wall, where (2�Z

k �
Z
k � �Z

k �
Z
k+1 � �Z

k+1�
Z
k ) = 4,

yielding a contribution U0(�) at that point.
Note that h(chain) is also scaled down when C(t) is

small, so with this simple encoding we cannot set C = 0.
However we do not need to initially turn off U1 entirely,
but just need to reduce it so that tunnelling is not possi-
ble. A more precise encoding that allows one to turn off
U1 entirely is to share U1 between J and h such that the
initial value of C makes them cancel exactly. That is

J (U)
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where the choice of parameters C(0) = C0 and C(tf ) = 1
gives the desired behaviour. We shall use this later on but
for the moment we will stay with the simpler assignment
of potentials.

This completes the encoding of the field theory poten-
tial. To verify that it is working as desired, we show
the resulting potential in Fig.3. For this and the remain-
der of the work we shall take N = 200 as a reasonable
compromise between accuracy and efficiency on the an-
nealer. As expected there are two unavoidable features
of the Ising potential compared to the original one, both
caused by the Ising chain encoding of the field theory:
first the negative rewards in Jchain cause an off-set of
order �N⇤; second the rewards in hchain in Eq.(18) im-
ply “dropped qubits” at the first and last positions (the
one at the last position is off the scale above the plot).
Neither of these should affect the tunnelling rate.

Let us now turn to the configuration of the anneal it-
self. As mentioned, the coefficients A and B describe

Figure 4: Anneal schedule parameters. The thermal contribu-
tion is shown as a solid line, while A and B are the coefficients
scaling the classical Ising and transverse field contributions
respectively

how “quantum” the system is, and are best visualised
with the plot in Fig.4. When s = 0 the system is maxi-
mally quantum, and when s = 1 the system has arrived at
the pure classically Ising-encoded problem. A “forward
anneal” schedule would take s(ti) = 0 and s(tf ) = 1,
beginning with a rapidly tunnelling system, and ending
up at a system that solves the optimisation problem of
interest. A “reverse anneal” schedule gains initial classi-
cal control with s = 1. Then we turn on the quantum
mechanics so that we send s to some finite value sq for
some time-interval, before returning to the classical sys-
tem. This latter option is the one we choose, as it allows
us to fix the system in the false vacuum, and then count
the number of times it tunnels when it is sent for a given
period to sq. It is shown as the blue line in Fig.5. For
the particular potential we are considering the behaviour
is actually quite distinct in the forward or reverse an-
neals: the former tends to result in wide bound states,
whereas the reverse anneal settles to better isolated but
more energetic states.

Note that the value of sq, i.e. the regime where we
induce quantum mechanical behaviour, is much larger
(sq = 0.7 in the figure) than would normally be the case.
In fact Fig.4 makes it clear that we will choose it to be
where quantum mechanics is just turning on, in order to
have relatively slow tunnelling and maintain good con-
trol.

During the anneal we will choose an h-gain schedule,
C(t), which varies between C0 < 1 and 1, as indicated by
the green line in Fig.5. For an initial period the h-gain
begins at a small enough value such that the second min-
imum induced by U1 is higher than that at the origin U0.
During this initial relaxation and dissipation period the
system is unable to tunnel, so ultimately it is expected
to reach the ground state of U0 given by Eq.(4). Once
it is in a stable bound state we can adjust C(t) to send
the coupling k ! 1, and turn on tunnelling for the rest
of the anneal. This configuration, in which we first al-
low the system to settle, is forced on us by the quantum
properties of the annealer. Indeed if we were to start
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This	is	what	the	Ising	model	sees	when	we	encode	the	simple	zero	space	dimension	case		
—	i.e.	this	is	U	taken	from	what	we	pass	to	the	annealer:



We	will	do	a	reverse	anneal	as	follows:		

a) begin	with	it	in	a	classical	state	(choose	the	sigmas)	with	a	single	well	potenOal	

b) bring	it	to	a	quantum	state	and	wait	50	microseconds	for	it	to	become	stable	

c) change	the	potenOal	to	introduce	the	second	well	

d) wait	t	microseconds	and	bring	it	back	to	a	classical	state	to	measure	the	sigmas	

e) Rinse	and	repeat	10K	Omes	

f) work	out	the	tunnelling	fracOon.

III. IMPLEMENTATION ON A QUANTUM AN-
NEALER

Let us now put together the components required to
perform such a study. As mentioned our goals are to
encode the field theory potential U(�) on the annealer,
then put the system into the approximate ground state
of a stable minimum, and add instability by adjusting
the coupling k in Eq.(1).

The method for encoding field theory was discussed in
[2]. In short we begin with the effective Hamiltonian of
the annealer, which is a generalised Ising model of the
form

HQA =A(s)
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�X
i , (16)

where i, j label the qubits, �Z
i are the z�spin Pauli ma-

trices, and �X
i are the transverse field components, while

the couplings ĥi and Ĵij between the qubits are set and
kept constant.

The reason these symbols are hatted is that they are
not in general the ones hi and Jij that are input by the
user. The annealer autoscales the latter until the largest
absolute value of the couplings hi (resp. Jij) is two (resp.
one). That is

ĥi =
hi

max{|hi|/2, |Jij |}
; Ĵij =

Jij
max{|hi|/2, |Jij |}

.

(17)
In our study we will keep all the couplings sufficiently
small that autoscaling is avoided (it is possible to extend
the ranges of couplings but we will not do this here).

The parameter s(t) (with t being time) is a user-defined
control-parameter that can be adjusted during the an-
neal, while A,B describe the resulting change in the
quantum characteristics of the annealer, and C(t) is an-
other user-defined parameter called the h-gain. To per-
form the more standard task of finding a global optimi-
sation, one would encode the problem to be solved in
the “classical” Ising model represented by the A-terms,
and then adjust the relative parameters A,B in order to
perform an anneal from a highly quantum system to a
classical one that has B = 0. For our purposes we will

tE = 1/kT . The instanton has to satisfy the periodicity con-
dition, and the time coordinate is rescaled accordingly with
� = 1/kT . For high temperatures there is effectively no room
for derivative terms in the short interval �, and we instead find

�E ⇠
Z �f

�i

D� e��
R 1
0 dt(U�E0) ⇠ e��Ea , (15)

with Ea being the activation energy to reach the top of the bar-
rier.

instead be probing the quantum properties of the system
when B 6= 0.

Scalar field values can be represented with the
“domain-wall encoding” introduced in [32]. That is we
first add the Ising chain Hamiltonian: defining the total
number of qubits we use as N (where N should be large),
this is given by

J (chain)
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CCCCCCA
,

h(chain) = ⇤0 (1, 0, 0 . . . , 0,�1), (18)

where ⇤,⇤0 are parameters that are somewhat larger
than the largest energy scale in the problem. (For the
best performance they should not be very much larger.)
The coupling h(chain) forces the system to have spin
�Z
1 = �1 at one end, and �Z

N = +1 at the other, while
J (chain) forces it to have as few spin-flips as possible. The
result is a single “frustrated” position (the so-called do-
main wall) where the spin flips from negative to positive.
This position, r say, encodes the value of the scalar field
as

� = �0 + ⇠r = �0 +
⇠

2

NX

i=1

(1� �i), (19)

where �0 is a fiducial minimum value, while the second
term gives r contributions of ⇠ from the negative �Z

i up
to the domain wall position. It is then straightforward
to see that one can encode a potential term U1(�) in the
hi couplings by adding

h(QFT)
j = �

⇠

2
U 0
1(�0 + ⇠j). (20)

For our purposes, such a term cannot represent the whole
of U in Eq.(1) however, because we need to divide the
potential into two pieces in order to have the ability to
turn on the metastable component. This functionality
is provided by the h-gain parameter C(t), so the entire
potential is encoded as

U = U0 + U1 , (21)

where

U0 =
3

4
tanh2 �, ; U1 = �k(t)sech2 (�� v) , (22)

where U0 remains to be encoded in J . This allows us
first to allow the system to settle in the minimum around
� = 0, and then to adjust C during the anneal to turn on
the potential U1, and induce tunnelling. The encoding of
U0 into J can be done by adding the couplings

J (QFT)
ij =

1

4
U0(�0 + ⇠j)

�
2�ij � �i(j�1) � �(i�1)j

�
, (23)
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PotenOal	is	split	into	two	parts	(one	for	each	well),	and	we	adjust	the	coupling	k	using			

the	h_gain_schedule.	(i.e.	well	1	is	U0	and	is	in	J,	well	2	is	U1	and	is	in	h).	



We	will	do	a	reverse	anneal	as	follows:		

a) begin	with	it	in	a	classical	state	(choose	the	sigmas)	with	a	single	well	potenOal	

b) bring	it	to	a	quantum	state	and	wait	50	microseconds	for	it	to	become	stable	

c) change	the	potenOal	to	introduce	the	second	well	

d) wait	t	microseconds	and	bring	it	back	to	a	classical	state	to	measure	the	sigmas	

e) Rinse	and	repeat	10K	Omes	

f) work	out	the	tunnelling	fracOon.

the system at the bottom of the metastable minimum at
the origin and then simply turn on the transverse field,
it would tunnel very rapidly. This is because in a re-
verse anneal it begins classically with a pre-defined set of
�Z
i ’s. This implies that the initial wavefunction  (�) is a

position eigenstate (it is essentially a Dirac �-function),
containing superpositions of all energy eigenstates.

It is worth mentioning several moves that are required
to improve performance. For all our results we will us-
ing a minor-embedding on the Dwave annealer QPU, due
to its limited connectivity, with N = 200 qubits in our
effective Ising model (but obviously with more on the
physical machine due to the embedding). Performance
is improved by splitting the large number of reads into
smaller groups (of say 100) in order to reduce biasing
from each embedding. The states are re-initialised at the
bottom of the false vacuum in a classical state at the be-
ginning of each read. As mentioned one also has to be
careful to set the Ising chain parameters, namely ⇤,⇤0,
to be not much larger than the largest energy scale in
the problem. This is because as mentioned we wish to
avoid the annealer autoscaling the couplings to ĥ, Ĵ as
in (17). After such scaling, Ising chain parameters that
were very large, would imply couplings in the physical
potential that were very small. The effect of autoscal-
ing is actually an additional motivation for our favour-
ing of Pöschl-Teller potentials, because they go to a con-
stant at large field values and different � intervals do not
change the autoscaling: by contrast a quartic potential
would grow rapidly at large field values4. Conversely if
the Ising chain parameters are too small then the Ising
chain breaks and we no longer have a faithful represen-
tation of the field value. Such “wall-breaks” happen a
few percent of the time and can never be eliminated en-
tirely. Those results are simply discarded. Additionally
the minor-embedding itself (which ties qubits together in
a similar fashion to the Ising chain embedding in J) may
also fail. The parameters can usually be adjusted so that
these “chain-breaks” happen rarely however.

IV. RESULTS

A. Calibration on SHO ground states

We now turn to the results, and discuss the various
parameters and further interpretation as we proceed, be-
ginning by studying the system with no tunnelling. That
is we keep C(t) = C0 and set v to be very large, in or-
der to learn about the effective Planck’s constant, more
precisely the combination � = ~2/2m⌘20 . As mentioned

4 It is also worth mentioning that the D-Wave annealer does
provide the possibility of turning off auto-scaling (by setting
auto�scale = False) but the performance is reduced unless the
couplings are tuned precisely anyway.

Figure 5: Typical reverse anneal schedule. The anneal pa-
rameter s increases the transverse field, and there is an initial
period of stabilisation in the minimum at the origin. The h-
gain parameter is then turned on to introduce metastability
and induce tunnelling.

this amounts to our calibration of the experiment, and
to perform it in a systematic way, we will use the simple-
harmonic-oscillator (SHO). That is we take

U0(�) =


2
�2 . (25)

We show the result of 30K reads of the annealer with
 = 0.06 in Fig.6, presented as binned probability density
functions normalised to one. (In other words as N ! 1

this curve would be | |2). Note that the value of  is
chosen small enough to avoid autoscaling. For this run
we hold the annealer at sq = 0.7 for 75 µs (plus 5 µs of
ramp-up and 1 µs of ramp-down).

By inspecting this and similar curves one gains some
intuition about the behaviour of this system. First, apart
from some seemingly characteristic perturbation around
the peak it clearly appears to have reached the Gaussian
ground state, which is of the form

| |2 =
(/2�)

1
4

⇡
1
2

e�
p

/2� �2

, (26)

so we can reasonably conclude that for this choice of pa-
rameters 75 µs is long enough for the required dissipation.
Note that the ⌘0 parameter cancels in the /� ratio. Sec-
ondly, this curve leads to an approximate estimation of
� = 0.33. Choosing different physical couplings appears
to yield similar values of �, so not only do the wave-
functions have the correct shape but they also have the
correct functional dependence on . By contrast the re-
sult for the inferred value of � does depend on the interval
we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
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Figure 3: The potential as seen by the Ising model on the
annealer, where we choose N = 200 qubits, and parameters
k = 1 and v = 5, c.f. the actual potential in Fig.1. Note the
large negative overall energy off-set due to the field theory
encoding, and the “dropped qubit” at � = �0.

where �ij is the Kronecker-�. These J terms contribute
zero to the Hamiltonian except at the location of the
domain wall, where (2�Z

k �
Z
k � �Z

k �
Z
k+1 � �Z

k+1�
Z
k ) = 4,

yielding a contribution U0(�) at that point.
Note that h(chain) is also scaled down when C(t) is

small, so with this simple encoding we cannot set C = 0.
However we do not need to initially turn off U1 entirely,
but just need to reduce it so that tunnelling is not possi-
ble. A more precise encoding that allows one to turn off
U1 entirely is to share U1 between J and h such that the
initial value of C makes them cancel exactly. That is

J (U)
ij =

1

4
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where the choice of parameters C(0) = C0 and C(tf ) = 1
gives the desired behaviour. We shall use this later on but
for the moment we will stay with the simpler assignment
of potentials.

This completes the encoding of the field theory poten-
tial. To verify that it is working as desired, we show
the resulting potential in Fig.3. For this and the remain-
der of the work we shall take N = 200 as a reasonable
compromise between accuracy and efficiency on the an-
nealer. As expected there are two unavoidable features
of the Ising potential compared to the original one, both
caused by the Ising chain encoding of the field theory:
first the negative rewards in Jchain cause an off-set of
order �N⇤; second the rewards in hchain in Eq.(18) im-
ply “dropped qubits” at the first and last positions (the
one at the last position is off the scale above the plot).
Neither of these should affect the tunnelling rate.

Let us now turn to the configuration of the anneal it-
self. As mentioned, the coefficients A and B describe

Figure 4: Anneal schedule parameters. The thermal contribu-
tion is shown as a solid line, while A and B are the coefficients
scaling the classical Ising and transverse field contributions
respectively

how “quantum” the system is, and are best visualised
with the plot in Fig.4. When s = 0 the system is maxi-
mally quantum, and when s = 1 the system has arrived at
the pure classically Ising-encoded problem. A “forward
anneal” schedule would take s(ti) = 0 and s(tf ) = 1,
beginning with a rapidly tunnelling system, and ending
up at a system that solves the optimisation problem of
interest. A “reverse anneal” schedule gains initial classi-
cal control with s = 1. Then we turn on the quantum
mechanics so that we send s to some finite value sq for
some time-interval, before returning to the classical sys-
tem. This latter option is the one we choose, as it allows
us to fix the system in the false vacuum, and then count
the number of times it tunnels when it is sent for a given
period to sq. It is shown as the blue line in Fig.5. For
the particular potential we are considering the behaviour
is actually quite distinct in the forward or reverse an-
neals: the former tends to result in wide bound states,
whereas the reverse anneal settles to better isolated but
more energetic states.

Note that the value of sq, i.e. the regime where we
induce quantum mechanical behaviour, is much larger
(sq = 0.7 in the figure) than would normally be the case.
In fact Fig.4 makes it clear that we will choose it to be
where quantum mechanics is just turning on, in order to
have relatively slow tunnelling and maintain good con-
trol.

During the anneal we will choose an h-gain schedule,
C(t), which varies between C0 < 1 and 1, as indicated by
the green line in Fig.5. For an initial period the h-gain
begins at a small enough value such that the second min-
imum induced by U1 is higher than that at the origin U0.
During this initial relaxation and dissipation period the
system is unable to tunnel, so ultimately it is expected
to reach the ground state of U0 given by Eq.(4). Once
it is in a stable bound state we can adjust C(t) to send
the coupling k ! 1, and turn on tunnelling for the rest
of the anneal. This configuration, in which we first al-
low the system to settle, is forced on us by the quantum
properties of the annealer. Indeed if we were to start
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We	will	do	a	reverse	anneal	as	follows:		

a) begin	with	it	in	a	classical	state	(choose	the	sigmas)	with	a	single	well	potenOal	

b) bring	it	to	a	quantum	state	and	wait	50	microseconds	for	it	to	become	stable	

c) change	the	potenOal	to	introduce	the	second	well	

d) wait	t	microseconds	and	bring	it	back	to	a	classical	state	to	measure	the	sigmas	

e) Rinse	and	repeat	10K	Omes	

f) work	out	the	tunnelling	fracOon.

the system at the bottom of the metastable minimum at
the origin and then simply turn on the transverse field,
it would tunnel very rapidly. This is because in a re-
verse anneal it begins classically with a pre-defined set of
�Z
i ’s. This implies that the initial wavefunction  (�) is a

position eigenstate (it is essentially a Dirac �-function),
containing superpositions of all energy eigenstates.

It is worth mentioning several moves that are required
to improve performance. For all our results we will us-
ing a minor-embedding on the Dwave annealer QPU, due
to its limited connectivity, with N = 200 qubits in our
effective Ising model (but obviously with more on the
physical machine due to the embedding). Performance
is improved by splitting the large number of reads into
smaller groups (of say 100) in order to reduce biasing
from each embedding. The states are re-initialised at the
bottom of the false vacuum in a classical state at the be-
ginning of each read. As mentioned one also has to be
careful to set the Ising chain parameters, namely ⇤,⇤0,
to be not much larger than the largest energy scale in
the problem. This is because as mentioned we wish to
avoid the annealer autoscaling the couplings to ĥ, Ĵ as
in (17). After such scaling, Ising chain parameters that
were very large, would imply couplings in the physical
potential that were very small. The effect of autoscal-
ing is actually an additional motivation for our favour-
ing of Pöschl-Teller potentials, because they go to a con-
stant at large field values and different � intervals do not
change the autoscaling: by contrast a quartic potential
would grow rapidly at large field values4. Conversely if
the Ising chain parameters are too small then the Ising
chain breaks and we no longer have a faithful represen-
tation of the field value. Such “wall-breaks” happen a
few percent of the time and can never be eliminated en-
tirely. Those results are simply discarded. Additionally
the minor-embedding itself (which ties qubits together in
a similar fashion to the Ising chain embedding in J) may
also fail. The parameters can usually be adjusted so that
these “chain-breaks” happen rarely however.

IV. RESULTS

A. Calibration on SHO ground states

We now turn to the results, and discuss the various
parameters and further interpretation as we proceed, be-
ginning by studying the system with no tunnelling. That
is we keep C(t) = C0 and set v to be very large, in or-
der to learn about the effective Planck’s constant, more
precisely the combination � = ~2/2m⌘20 . As mentioned

4 It is also worth mentioning that the D-Wave annealer does
provide the possibility of turning off auto-scaling (by setting
auto�scale = False) but the performance is reduced unless the
couplings are tuned precisely anyway.

Figure 5: Typical reverse anneal schedule. The anneal pa-
rameter s increases the transverse field, and there is an initial
period of stabilisation in the minimum at the origin. The h-
gain parameter is then turned on to introduce metastability
and induce tunnelling.

this amounts to our calibration of the experiment, and
to perform it in a systematic way, we will use the simple-
harmonic-oscillator (SHO). That is we take

U0(�) =


2
�2 . (25)

We show the result of 30K reads of the annealer with
 = 0.06 in Fig.6, presented as binned probability density
functions normalised to one. (In other words as N ! 1

this curve would be | |2). Note that the value of  is
chosen small enough to avoid autoscaling. For this run
we hold the annealer at sq = 0.7 for 75 µs (plus 5 µs of
ramp-up and 1 µs of ramp-down).

By inspecting this and similar curves one gains some
intuition about the behaviour of this system. First, apart
from some seemingly characteristic perturbation around
the peak it clearly appears to have reached the Gaussian
ground state, which is of the form
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so we can reasonably conclude that for this choice of pa-
rameters 75 µs is long enough for the required dissipation.
Note that the ⌘0 parameter cancels in the /� ratio. Sec-
ondly, this curve leads to an approximate estimation of
� = 0.33. Choosing different physical couplings appears
to yield similar values of �, so not only do the wave-
functions have the correct shape but they also have the
correct functional dependence on . By contrast the re-
sult for the inferred value of � does depend on the interval
we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
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Figure 3: The potential as seen by the Ising model on the
annealer, where we choose N = 200 qubits, and parameters
k = 1 and v = 5, c.f. the actual potential in Fig.1. Note the
large negative overall energy off-set due to the field theory
encoding, and the “dropped qubit” at � = �0.

where �ij is the Kronecker-�. These J terms contribute
zero to the Hamiltonian except at the location of the
domain wall, where (2�Z
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k+1�
Z
k ) = 4,

yielding a contribution U0(�) at that point.
Note that h(chain) is also scaled down when C(t) is

small, so with this simple encoding we cannot set C = 0.
However we do not need to initially turn off U1 entirely,
but just need to reduce it so that tunnelling is not possi-
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where the choice of parameters C(0) = C0 and C(tf ) = 1
gives the desired behaviour. We shall use this later on but
for the moment we will stay with the simpler assignment
of potentials.

This completes the encoding of the field theory poten-
tial. To verify that it is working as desired, we show
the resulting potential in Fig.3. For this and the remain-
der of the work we shall take N = 200 as a reasonable
compromise between accuracy and efficiency on the an-
nealer. As expected there are two unavoidable features
of the Ising potential compared to the original one, both
caused by the Ising chain encoding of the field theory:
first the negative rewards in Jchain cause an off-set of
order �N⇤; second the rewards in hchain in Eq.(18) im-
ply “dropped qubits” at the first and last positions (the
one at the last position is off the scale above the plot).
Neither of these should affect the tunnelling rate.

Let us now turn to the configuration of the anneal it-
self. As mentioned, the coefficients A and B describe

Figure 4: Anneal schedule parameters. The thermal contribu-
tion is shown as a solid line, while A and B are the coefficients
scaling the classical Ising and transverse field contributions
respectively

how “quantum” the system is, and are best visualised
with the plot in Fig.4. When s = 0 the system is maxi-
mally quantum, and when s = 1 the system has arrived at
the pure classically Ising-encoded problem. A “forward
anneal” schedule would take s(ti) = 0 and s(tf ) = 1,
beginning with a rapidly tunnelling system, and ending
up at a system that solves the optimisation problem of
interest. A “reverse anneal” schedule gains initial classi-
cal control with s = 1. Then we turn on the quantum
mechanics so that we send s to some finite value sq for
some time-interval, before returning to the classical sys-
tem. This latter option is the one we choose, as it allows
us to fix the system in the false vacuum, and then count
the number of times it tunnels when it is sent for a given
period to sq. It is shown as the blue line in Fig.5. For
the particular potential we are considering the behaviour
is actually quite distinct in the forward or reverse an-
neals: the former tends to result in wide bound states,
whereas the reverse anneal settles to better isolated but
more energetic states.

Note that the value of sq, i.e. the regime where we
induce quantum mechanical behaviour, is much larger
(sq = 0.7 in the figure) than would normally be the case.
In fact Fig.4 makes it clear that we will choose it to be
where quantum mechanics is just turning on, in order to
have relatively slow tunnelling and maintain good con-
trol.

During the anneal we will choose an h-gain schedule,
C(t), which varies between C0 < 1 and 1, as indicated by
the green line in Fig.5. For an initial period the h-gain
begins at a small enough value such that the second min-
imum induced by U1 is higher than that at the origin U0.
During this initial relaxation and dissipation period the
system is unable to tunnel, so ultimately it is expected
to reach the ground state of U0 given by Eq.(4). Once
it is in a stable bound state we can adjust C(t) to send
the coupling k ! 1, and turn on tunnelling for the rest
of the anneal. This configuration, in which we first al-
low the system to settle, is forced on us by the quantum
properties of the annealer. Indeed if we were to start
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Results:	(reverse	anneal	with	200	qubits)	we	see	tunnelling	—	e.g.	at	v=2.5	

Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150µs.

Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
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Note	that	this	is	literally	an	experimental	measurement		

of	the	wave-funcAon	squared																!
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on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.
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We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
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Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
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Results:	it	appears	to	drop	exponenAally	with	v	as	predicted	by	WKB:	
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0 = 0.33.

we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.
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We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
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Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150µs.

Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
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Figure 9: Best fit values for the tunnelling fraction P (v) =
ae�bv for varying vacuum expectation values v, with tun-
nelling time ttunnel = 100µs are a = 50.5 and b = 2.29.

the states are really tunnelling through the barrier rather
than being thermally excited over the top, noting for ex-
ample that an explanation for the drop-off with v ob-
served in the tunnelling rate above, could simply be due
to the height of the barrier (and hence the activation
energy Ea) increasing with v.

In order to probe this particular question, we will now
examine a potential that provides as “clean” as possible
a separation between quantum and thermal behaviour,
as shown in Figure 10. The potential is divided up more
precisely than before, in the manner described earlier, so
that it is of the form in (24) where we take C0 = 0.2 as
our initial h-gain parameter. In other words the terms in
our new potential can be written

U0 =
3

4
tanh2 �� C0 U1 ,

U1 = k0 tanh2 �� k sech2c(�� v) , (27)

with the potential at t = 0 being the single Pöschl-Teller
well, shown as the solid blue line. When C(t) ! 1, the
first term in U1 then raises the sides of the well by (1 �
C0)k0, while the second term introduces a new well at
� = v of width ⇠ 1/c and depth (1�C0)k. We will take
c = 3 and k0 = 1/2. We then consider k = k0 or k = 2.
For this study we will also choose sq = 0.65 which gives
more rapid tunnelling, allowing us choose values of v that
are in the flat region of the potential.

There are several reasons that this constitutes a clean
separation of quantum and thermal behaviour. First it
is notable from the study above that the bound state
in which the system begins has a rather high energy.
As such if we simply introduce a new minimum as we
did earlier then it is likely that some components of the
wave-function will be able to tunnel rapidly. (We observe
this.). The initial dip at v would also be able to capture
states during the dissipation phase. Neither of these two
types of state could be very easily distinguished from ones
that had thermally tunnelled.

Figure 10: Minimally disturbing the initial state in order to
test if the tunnelling exhibits quantum or thermal behaviour.
The initial potential is a single well, and additional terms
raise a barrier between it and a new well that is introduced
with either a minimum at either exactly the same height as
the original potential, or deeper than the original one.

What do we expect the tunnelling behaviour to be
in the potential above? In the situation where k = k0

no new minimum is introduced that would be quantum
mechanically accessible to any component of the initial
bound state. Therefore in principle we should not find
any states in this minimum at all if the system is purely
quantum, although in practice this will depend on there
being no remaining continuous component in the spec-
trum at all. This is in contrast to the case where k = 2
shown as the dashed red line in Fig. 10, where the stan-
dard quantum tunnelling should take place. Moreover
according to (14) the observed tunnelling rate into this
minimum should again drop-off with increasing v, even if
we consider values of v in the region where barrier height
is constant.

Let us contrast this behaviour with what one would
expect for a thermally activated system. In this case
there would be little distinction between the k = 1/2
and k = 2 cases. Once thermal effects are large enough
to excite states over the barrier, roughly similar propor-
tions would be captured by the new minimum at � = v.
How much remains trapped there depends somewhat on
the temperature and whether the transitions are in equi-
librium. Calling the minima at 0 and v, A and B respec-
tively, and the height of the barrier Ea, ultimately such
a system would attempt to reach an equilibrium where
the transition rates are the same in both directions, i.e.
NA
NB

= eEa/kBT e�(Ea�EB))/kBT = eEB/kBT . If the system
were fully in equilibrium then the ratio of the numbers of
states found in the new minima would be independent of
the height of the barrier, and of order e(EB1�EB2 )/kBT ,
where 1, 2 labels the choice k = k0 or 2 respectively. How-
ever the difference in energies (EB1 �EB2) is of the same
order as the activation energy Ea itself. Therefore a sig-
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and with sq = 0.7 after time t = 75µs and with  = 0.06.
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we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150µs.

Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
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Could	this	be	thermal	excitaOon?	Test	with	a	maximally	Thermal	=\=	Quantum	set-up:

Figure 9: Best fit values for the tunnelling fraction P (v) =
ae�bv for varying vacuum expectation values v, with tun-
nelling time ttunnel = 100µs are a = 50.5 and b = 2.29.

In order to probe this particular question, we will now
examine a potential that provides as “clean” as possible
a separation between quantum and thermal behaviour,
as shown in Figure 10. The potential is divided up more
precisely than before, in the manner described earlier, so
that it is of the form in (24) where we take C0 = 0.2 as
our initial h-gain parameter. In other words the terms in
our new potential can be written

U0 =
3

4
tanh2 �� C0 U1 ,

U1 = k0 tanh2 �� k sech2c(�� v) , (27)

with the potential at t = 0 being the single Pöschl-Teller
well, shown as the solid blue line. When C(t) ! 1, the
first term in U1 then raises the sides of the well by (1 �
C0)k0, while the second term introduces a new well at
� = v of width ⇠ 1/c and depth (1�C0)k. We will take
c = 3 and k0 = 1/2. We then consider k = k0 or k = 2.
For this study we will also choose sq = 0.65 which gives
more rapid tunnelling, allowing us choose values of v that
are in the flat region of the potential.

There are several reasons that this constitutes a clean
separation of quantum and thermal behaviour. First it
is notable from the study above that the bound state
in which the system begins has a rather high energy.
As such if we simply introduce a new minimum as we
did earlier then it is likely that some components of the
wave-function will be able to tunnel rapidly. (We observe
this.). The initial dip at v would also be able to capture
states during the dissipation phase. Neither of these two
types of state could be very easily distinguished from ones
that had thermally tunnelled.

What do we expect the tunnelling behaviour to be
in the potential above? In the situation where k = k0

no new minimum is introduced that would be quantum
mechanically accessible to any component of the initial
bound state. Therefore in principle we should not find
any states in this minimum at all if the system is purely

Figure 10: Minimally disturbing the initial state in order to
test if the tunnelling exhibits quantum or thermal behaviour.
The initial potential is a single well, and additional terms
raise a barrier between it and a new well that is introduced
with either a minimum at either exactly the same height as
the original potential, or deeper than the original one.

quantum, although in practice this will depend on there
being no remaining continuous component in the spec-
trum at all. This is in contrast to the case where k = 2
shown as the dashed red line in Fig. 10, where the stan-
dard quantum tunnelling should take place. Moreover
according to (14) the observed tunnelling rate into this
minimum should again drop-off with increasing v, even if
we consider values of v in the region where barrier height
is constant.

Let us contrast this behaviour with what one would
expect for a thermally activated system. In this case
there would be little distinction between the k = 1/2
and k = 2 cases. Once thermal effects are large enough
to excite states over the barrier, roughly similar propor-
tions would be captured by the new minimum at � = v.
How much remains trapped there depends somewhat on
the temperature and whether the transitions are in equi-
librium. Calling the minima at 0 and v, A and B respec-
tively, and the height of the barrier Ea, ultimately such
a system would attempt to reach an equilibrium where
the transition rates are the same in both directions, i.e.
NA
NB

= eEa/kBT e�(Ea�EB))/kBT = eEB/kBT . If the system
were fully in equilibrium then the ratio of the numbers of
states found in the new minima would be independent of
the height of the barrier, and of order e(EB1�EB2 )/kBT ,
where 1, 2 labels the choice k = k0 or 2 respectively. How-
ever the difference in energies (EB1 �EB2) is of the same
order as the activation energy Ea itself. Therefore a sig-
nificant thermal tunnelling would result in similar num-
bers of states in the new minima. And the k = 2 and
k = k0 cases become only more similar if the transitions
begin to fall out of equilibrium, as the rate of tunnelling
in either direction would become very low: the number
count in the new minimum would then simply depend on
how many states had fallen into its domain of attraction,
and this would be virtually independent of the depth. Fi-
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Figure 11: The transition probabilities into the raised mini-
mum of Fig.10 for v = 4 with sq = 0.65 after ttunnel = 100µs.

how many states had fallen into its domain of attraction,
and this would be virtually independent of the depth. Fi-
nally the tunnelling rate should not depend on v in this
potential if it proceeds by thermal activation: any ther-
mally activated state would be equally likely to fall into
the new minimum regardless of v.

We show results from the two cases k = k0 and k = 2
are shown in Figures 11 and 12 respectively. The for-
mer shows the expected quantum tunnelling behaviour
with a rapid fall in tunnelling probability as v increases.
The latter has collected some of the energetic degrees of
freedom but only a fraction of the number that are able
to tunnel into the lower minimum. For this system with
v = 4 we estimate that roughly half the states have quan-
tum tunnelled (i.e. they appear on the right hand side of
the barrier), while the remainder reached the new mini-
mum either through excited non-tunnelling propagation
or thermal excitation. There are other simple tests one
could devise, and set-ups that probe different aspects of
the physics. For example one could construct a potential
with a small but thin extra barrier in front of the second
well. Thermally excited transition would be greatly re-
duced by such a barrier, while quantum transition would
be virtually unaffected.

V. CONCLUSION

Barrier penetration is a manifestly quantum mechan-
ical property of a quantum field. While such tunnelling
processes have been observed and studied in quantum
mechanics and a selection of special quantum field the-
ories realised in nature, for instance in some condensed
matter systems, to our knowledge, such instanton pro-
cesses have never been observed and experimentally stud-
ied in a freely chosen quantum field theory.

For this purpose we outlined how to encode a quan-
tum field theory as an Ising model and probe it exper-

Figure 12: The transition probabilities for different v in the
presence of the deep minima of Fig.10, with sq = 0.65 after
ttunnel = 100µs.

imentally. The quantum field is represented by a spin
chain and each node corresponds to a qubit on a quan-
tum annealer. After initialising the quantum field with
a field value in the potential minimum, one can observe
it settle into a quantum eigenstate characteristic of the
potential profile imposed on the system. In a second
step we then modified the energy profile of the quantum
annealer across its qubits, such that the quantum field
was no longer in the global potential minimum, but in a
false vacuum. We then measured the probability for the
field to tunnel from the false to the true vacuum for var-
ious tunnelling times, vacuum displacements and poten-
tial profiles. It was then possible to compare the observed
tunnelling probabilities with that predicted theoretically
by the WKB method.

Thus a quantum annealer, as for example provided by
D-Wave, is an genuine quantum system that, following
our method, can be used as a quantum laboratory for
general field theories. The complexity of the theory that
can be studied in this laboratory is limited only by the
number and connectivity of the qubits in the quantum
annealer. This highly adaptive approach could therefore
have far reaching implications for future studies of quan-
tum field theories. As experimental measurements of the
dynamical behaviour of field theories are entirely inde-
pendent of theoretical calculations, they can be used to
infer their properties without being limited by the avail-
ability of suitable perturbative or nonperturbative com-
putational methods. Conversely, in the near future, mea-
surements in such a quantum laboratory could be used
to improve theoretical and computational methods con-
ceptually. Furthermore it will enable the measurement
and detailed study of previously unobserved quantum
phenomena, involving solitons, instantons and so forth,
that are relevant for field theories of interest in parti-
cle physics, condensed matter physics, quantum optics
or cosmology.
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Several	other	checks	this	is	genuinely	quantum	tunnelling	and	not	thermal	excitaOon.	
Simplest	is	to	examine	the	dynamics:	e.g.	when	we	turn	off	the	transverse	field	
component	the	system	won’t	even	roll	down	a	hill!		

e.g.	a~er	t=180			s		we	find	the	following	if	we	start	at	-2:		µ



Also	dynamics	has	characterisOc	behaviour.	For	example	it	sOll	“tunnels”	to	the	botom	
of	a	potenOal	even	if	there	is	no	barrier:	i.e.	the	wave	funcOon	leaks	across,	rather	than	
rolling	as	a	lump	—	
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Numerically	solving	S.E.	we	find	(this	takes	an	hour!)	
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of	a	potenOal	even	if	there	is	no	barrier:	i.e.	the	wave	funcOon	leaks	across,	rather	than	
rolling	as	a	lump	—	

MulOple	measurements	on	the	quantum	annealer:
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Conclusions

•We	have	seen	how	the	general	Ising	model	can	be	used	to	encode	QFT		

•First	instance	of	being	able	to	build	a	QFT	by	hand	in	order	to	experimentally	
measure	instanton	and	other	processes	in	it	

•Observed	and	measure	genuine	tunnelling	out	of	false	vacua	(d=1	QFT)	

•Behaviour	is	non-thermal	(we	are	able	to	perform	several	easy	tests	by	
adjusOng	the	potenOal)	

•Provides	a	quantum	lab	for	future	tests	of	e.g.	non-WKB	situaOons,	strongly	
coupled	systems	

•Gauge	theories,	more	dimensions	etc	etc	etc.		


