EXCLUSIVE B_C -MESON DECAYS AT LHC

A.K. Likhoded, A.V. Luchinsky

Institute of High Energy Physics, Protvino, Russia

CONTENTS

- \circ B_c-mesons
- Semileptonic decays, form-facors
- Spin asymmetries
- Spectral functions
- Numerical results
- EvtGen package
- Conclusion

A.K. Likhoded, A.V. Luchinsky Phys.Rev.D81:014015,2010 [arXiv:0910.3089] Phys.Rev.D82:014012,2010 [arXiv:1004.0087]

B_C-MESONS

Intermediate between charmonium and bottomonium mseons

 $I(J^P) = 0(0^-)$ I, J, P need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass $m = 6.277 \pm 0.006$ GeV (S = 1.6) Mean life $\tau = (0.453 \pm 0.041) \times 10^{-12}$ s

 B_c^- modes are charge conjugates of the modes below.

 $B_{c}^{+} \text{ DECAY MODES} \times B(\overline{b} \to B_{c}) \qquad \text{Fraction } (\Gamma_{i}/\Gamma) \qquad \text{Confidence level } (\text{MeV}/c)$

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c)$.

(5.2+2	$^{.4}_{.1}) imes 10^{-5}$		_
< 8.2	$ imes$ 10 $^{-5}$	90%	2372
< 5.7	imes 10 ⁻⁴	90%	2352
< 1.2	imes 10 ⁻³	90%	2171
< 6.2	imes 10 ⁻³	90%	2468
	(5.2^{+2}_{-2}) < 8.2 < 5.7 < 1.2 < 6.2	$\begin{array}{rrr}(5.2^{+2.4}_{-2.1})\times10^{-5}\\<8.2&\times10^{-5}\\<5.7&\times10^{-4}\\<1.2&\times10^{-3}\\<6.2&\times10^{-3}\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Nothing else is known experimentally. Additional information after LHC launch (~5*10¹⁰ B_c events per year)

DOMINANT DECAY MODES

b-quark decays (z.B. B_c→J/ψ+X) ~ 20%
c-quark decays (z.B. B_c→B_s+X) ~70%
annihilation decays (z.B. Bc →τν_τ) ~ 5%

Dominant Decay Modes

Decay	free	B_c^+	BR	Decay	free	B_c^+	BR
mode	quarks			mode	quarks		
$b \rightarrow \bar{c} + e^+ \nu_e$	62	62	4.7	$c \rightarrow s + e^+ + \nu_e$	124	74	5.6
$\bar{b} \to \bar{c} + \mu^+ \nu_\mu$	62	62	4.7	$c \to s + \mu^+ + \nu_\mu$	124	74	5.6
$\bar{b} \to \bar{c} + \tau^+ \nu_{\tau}$	14	14	1.0	$c \to s + u + \bar{d}$	675	405	30.5
$\bar{b} \to \bar{c} + \bar{d} + u$	248	248	18.7	$c \rightarrow s + u + \bar{s}$	33	20	1.5
$\bar{b} \rightarrow \bar{c} + \bar{s} + u$	13	13	1.0	$c \rightarrow d + e^+ \nu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{s} + c$	87	87	6.5	$c \to d + \mu^+ + \nu_\mu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{d} + c$	5	5	0.4	$c \to d + u + \bar{d}$	39	23	1.7
$B_c^+ \to \tau^+ + \nu_\tau$	—	63	4.7	$B_c^+ \to c + \bar{s}$	—	162	12.2
$B_c^+ \to c + \bar{d}$	_	8	0.6	$B_c^+ \to \text{all}$	_	1328	100

Semileptonic B_C -meson Decays

$$M\left[B_{c}\left(p_{1}\right) \rightarrow V\left(p_{2}, \varepsilon_{V}\right) + e^{+} v_{e}\right] = \frac{G_{F}V_{12}}{\sqrt{2}} H^{\mu}\left[\overline{e} \gamma_{\mu}\left(1 - \gamma_{5}\right) v_{e}\right]$$

Semileptonic B_C -meson Decays

• $B_c(p_1) \rightarrow P(p_2)eV_e$ $H_{\mu} = f_+(q^2)p_{\mu} + f_-(q^2)q_{\mu}$ • $B_c(p_1) \rightarrow V(p_2,\varepsilon)eV_e$ $p = p_1 + p_2$ $q = p_1 - p_2$

$$H_{\mu} = F_{0}^{A} (q^{2}) \varepsilon_{\mu} + F_{+}^{A} (q^{2}) (\varepsilon p) p_{\mu} + F_{-}^{A} (q^{2}) (\varepsilon p) q_{\mu}$$
$$+ i F_{V} (q^{2}) e_{\mu\nu\alpha\beta} \varepsilon^{\nu} p^{\alpha} q^{\beta}$$

FORM-FACTORS

 $F_i(q^2) \approx F_i(0) \exp\{c_1 q^2 + c_2 q^4\}$

 $B_c \rightarrow B_s^{(*)} + W$

		SR[5]	PM [5]	LF [7]			SR[5]	PM [5]	LF[7]
	$F\left(0 ight)$	1.3	1.1	0.73		$F\left(0 ight)$	8.1	8.2	6.1
F_+	c_1 , ГэВ ⁻²	0.30	0.30	0.56	F_0^A , ГэВ	$c_1, \Gamma \circ B^{-2}$	0.30	0.52	0.56
	c_2 , ГэВ ⁻⁴	0.069	0.069	0.030		c_2 , ГэВ ⁻⁴	0.069	0.02	0.087
	$F\left(0 ight)$	-5.8	-5.9	-1.7		$F\left(0 ight)$	0.15	0.30	0
F_{-}	c_1 , ГэВ ⁻²	0.30	0.30	0.70	$F_+^A, \Gamma \mathfrak{s} \mathfrak{B}^{-1}$	c_1 , ГэВ ⁻²	0.30	0.30	1
	c_2 , ГэВ ⁻⁴	0.069	0.069	-0.02		$c_2, \Gamma \circ B^{-4}$	0.069	0.069	1
	$F(0), \Gamma$ эВ ⁻¹	1.08	1.1	0.31		$F\left(0 ight)$	1.8	1.4	0
F_V	c_1 , ГэВ ⁻²	0.30	0.30	0.12	F_{-}^{A} , Γ	c_1 , ГэВ ⁻²	0.30	0.30	1
	c_2 , ГэВ ⁻⁴	0.69	0.069	-0.02		c_2 , ГэВ ⁻⁴	0.069	0.069	1

HADRONIC DECAYS

$$H_{\text{eff}} = \frac{G_{F}}{2\sqrt{2}} V_{QQ'} V_{ud} \left\{ C_{+}(\mu) O_{+} + C_{-}(\mu) O_{-} \right\}$$
$$O_{\pm} = \left(\overline{d}_{i} u_{j} \right)_{V-A} \left(\overline{Q}_{i} Q_{j}^{'} \right)_{V-A} \pm \left(\overline{d}_{i} u_{j} \right)_{V-A} \left(\overline{Q}_{j} Q_{i}^{'} \right)_{V-A}$$
$$a_{1}(\mu) = \frac{1}{2N_{c}} \left[(N_{c} - 1) C_{+}(\mu) + (N_{c} + 1) C_{-}(\mu) \right]$$
$$M \left[B_{c} \rightarrow V(P) + R \right] = \frac{G_{F} V_{QQ'} V_{ud}}{\sqrt{2}} a_{1}^{Q} H^{\mu} \mathcal{E}_{\mu}^{R}$$

$$a_1^b = 1.17$$
 $a_1^c = 1.2$

$$d\Gamma/dq^{2}$$

$$d\Gamma = \frac{1}{2M} \sum_{\lambda} |M|^{2} d\Phi_{n+1} (p_{1} \rightarrow p_{2}k_{1}...k_{n}) =$$

$$d\Phi_{n+1}(p_{1} \rightarrow p_{2}k_{1}...k_{n}) = (2\pi)^{4} \delta^{4} (p_{1} - p_{2} - \sum_{\nu} k_{\nu}) \frac{d^{3}\mathbf{p}_{2}}{2E_{2}(2\pi)^{3}} \prod_{\nu} \frac{d^{3}\mathbf{k}_{\nu}}{2\omega_{\nu}(2\pi)^{3}} = \frac{dq^{2}}{2\pi} d\Phi_{2}(p_{1} \rightarrow p_{2}q) d\Phi_{n}(q \rightarrow k_{1}...k_{n})$$

$$\frac{d\Gamma}{dq^{2}} = \sum_{\lambda} H_{\mu}H_{\nu}^{*} \int d\Phi_{n}(q \rightarrow k_{1}...k_{n}) \varepsilon_{\mu}^{\kappa} \varepsilon_{\nu}^{*\kappa}$$

$$\frac{1}{2\pi} \int d\Phi_{n}(q \rightarrow k_{1}...k_{n}) \varepsilon_{\mu}^{\kappa} \varepsilon_{\nu}^{*\kappa} = (q_{\mu}q_{\nu} - q^{2}g_{\mu\nu}) \rho_{\tau}^{\kappa}(q^{2}) + q_{\mu}q_{\nu}\rho_{L}^{\kappa}(q^{2})$$
spectral functions

$$\frac{d\Gamma/dq^2}{dq^2} = \frac{G_F^2 V_{QQ}^2 a_1^2}{32\pi M_1} \beta \left\{ \left| f_+ \right|^2 \left[M_1^4 \beta^2 \rho_T^R + \left(M_1^2 - M_2^2 \right)^2 \rho_L^R \right] + \left| f_- \right|^2 q^2 \rho_L^R + 2\text{Re}(f_+ f_-) q^2 \left(M_1^2 - M_2^2 \right) \rho_T^R \right\}$$

$$\frac{d\Gamma(B_c \rightarrow V + R)}{dq^2} = \frac{G_F^2 V_{QQ'}^2 a_1^2}{128\pi} \frac{M_1^2}{M_2^3} \rho_T^R \left\{ \left| F_0^A \right|^2 \left(12 \frac{q^2 M_2^2}{M_1^2} + \beta^2 \right) + \beta^4 M_1^4 \left| F_+^A \right|^2 + 8\beta^2 q^2 M_2^2 \left| F_V \right|^2 + 2\left(M_1^2 - M_2^2 - q^2 \right) \beta^2 \operatorname{Re}\left(F_0^A F_+^A \right) \right\}$$

on final state

• $\rho_L^{\pi}(q^2) = f_{\pi}^2 \delta(q^2 - m_{\pi}^2),$ $\rho_T^{\pi}(q^2) = 0$ • $\rho_L^{\rho}(q^2) = 0,$ $\rho_T^{\rho}(q^2) = f_{\rho}^2 \delta(q^2 - m_{\rho}^2)$ • CVC, PCAC $\implies \rho_L^{R}(q^2) \approx 0$ • ud, ev

$$\rho_T^{ud}(q^2) = \frac{1}{2\pi^2}, \qquad \rho_T^{ev}(q^2) = \frac{1}{N_c a_1^2} \frac{1}{2\pi^2}$$

 \circ n π

$$\frac{d\Gamma(\tau \rightarrow \nu_{\tau} + R)}{dq^{2}} = \frac{G_{F}^{2}}{16\pi m_{\tau}} \frac{\left(m_{\tau}^{2} - q^{2}\right)^{2}}{m_{\tau}^{3}} \left(m_{\tau}^{2} + 2q^{2}\right) \rho_{T}^{R}\left(q^{2}\right)$$

$$\sigma\left(e^{+}e^{-} \rightarrow R\right) = \frac{4\pi\alpha^{2}}{s} \rho_{T}^{R}\left(s\right)$$

$$\frac{dBr\left(B_{c} \rightarrow V, P + R\right)}{dq^{2}} \sim \frac{dBr\left(B_{c} \rightarrow V, P + \overline{u}d\right)}{dq^{2}} \rho_{T}^{R}\left(q^{2}\right)$$

 $R=2\pi - \tau \rightarrow v_{\tau}+2\pi$

$$\rho_T^{2\pi}(s) \approx 1.35 \times 10^{-3} \left(\frac{s - 4m_\pi^2}{s}\right)^2 \frac{1 + 0.64s}{(s - 0.57)^2 + 0.013}.$$

R= $3\pi - \tau \rightarrow \nu_{\tau} + 3\pi$

$$\rho_T^{3\pi}(s) \approx 5.86 \times 10^{-5} \left(\frac{s - 9m_\pi^2}{s}\right)^4 \frac{1 + 190.s}{\left[\left(s - 1.06\right)^2 + 0.48\right]^2}$$

 $R = 4\pi - e^+e^- \rightarrow 4\pi$

	SR	PM	LC
$B_c \rightarrow J/\psi$	J/ψ 0.17 0.17		0.13
$B_c \rightarrow B_s$	18	12	5.5
$B_c \rightarrow B_s^*$	7	9.4	2.8

ρ

	SR	PM	LC
$B_c \rightarrow J/\psi$	0.48	0.44	0.38
$B_c \rightarrow B_s$	7.6	5.4	3.1
$B_c \rightarrow B_s^*$	21	22	14

Br, %	SR PM		LC
$B_c \rightarrow J/\psi$	0.48 (0.48)	0.44 (0.44)	0.35 (0.38)
$B_c \rightarrow B_s$	6.1 (7.6)	4.3 (5.4)	2.4 (3.1)
$B_c \rightarrow B_s^*$	13 (21)	14 (22)	8.3 (14)

 $\rho\text{-meson}$ width can be ignored for $B_c {\rightarrow} J/\psi \rho$ decay, but is extremely important for $B_c {\rightarrow} B_s\text{-decays!}$

 $\rho\text{-meson}$ width can be ignored for $B_c {\rightarrow} J/\psi \rho$ decay, but is extremely important for $B_c {\rightarrow} B_s\text{-decays!}$

Br, %	Sr, % SR PM		LC
$B_c \rightarrow J/\psi$	0.77	0.64	0.52
$B_c \rightarrow B_s$	0.096	0.068	0.039
$B_c \rightarrow B_s^*$	0.23	0.24	0.16

Phase-space suppression is stronger then CKM-enhancement

Br, %	SR	PM	LC
$B_c \rightarrow J/\psi$	0.40	0.33 0.26	
$B_c \rightarrow B_s$	0.0064	0.0045	0.0026
$B_c \rightarrow B_s^*$	0.015	0.016	0.01

Phase-space suppression is stronger then CKM-enhancement

MULTIPLICITY

EVTGEN PACKAGE

🚱 💽 Paul Harrison 1/06/2010

Introduction to EvtGen - 9

Decay amplitudes used instead of probabilities

EvtGen works with amplitudes to correctly handle sequential decays:

 $\begin{array}{ccc} B \to D^* & \tau \nu \\ & & {} \downarrow D \pi & {} \downarrow \pi \nu \end{array}$

$$d\Gamma = |A|^2 d\phi \qquad A = \sum_{\lambda_D^* \lambda_\tau} A^{B \to D^* \tau \nu}_{\lambda_D^* \lambda_\tau} A^{D^* \to D \pi}_{\lambda_D^*} A^{\tau \to \pi \nu}_{\lambda_\tau}$$

$$A^{B \to D^* \tau \nu}_{\lambda_D^* \lambda_\tau} \equiv \langle \lambda_{D^*} \lambda_\tau | H | B \rangle$$
$$\sum_{\lambda_D^*} |\lambda_{D^*} \rangle \langle \lambda_{D^*} | = I$$

Nodes in the decay tree are implemented as "models". The framework of EvtGen handles the bookkeeping needed to correctly generate the full decay tree.

- This file is provided with the release of EvtGen.
- Contains a very extensive list of particle decays (~8000), organised by mother-type.
- For each decay mode, includes BF, list of daughters and a default decay model.
- Eg. (small sample of file):

```
Decay anti-BO
0.00044
          J/psi K SO
                                  SVS;
0.00044 J/psi K LO
                                  SVS:
0.00133 J/psi anti-K*0
                                  SVV HELAMP 0.5 0.0 1.0 0.0 0.5 0.0;
0.0000205
            J/psi piO
                                  SVS:
         J/psi K- pi+
0.0002
                                PHSP:
0.0001
         J/psi anti-KO piO
                                     PHSP:
```


Paul Harrison 1/06/2010

0.18	B_s0	pi+	BC_P_NPI
	250	1	#maxProb
	1.3	0.30	0.069; # Fp

Enddecay

CONCLUSION

 \Box Bc-meson decays into heavy quarkonia and set of π -meons is considered

$$\circ \quad B_c \to J/\psi + n \pi \\ \circ \quad B_c \to B_s + n \pi$$

$$= 1 \le n \le 4$$

 \Box Distributions over final quarkonium energy can be used to determine spectral functions of π -meson system

□ MC package for EvtGen generator is described