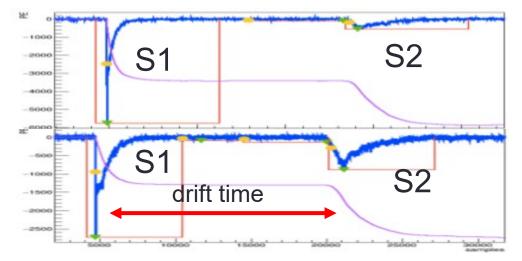
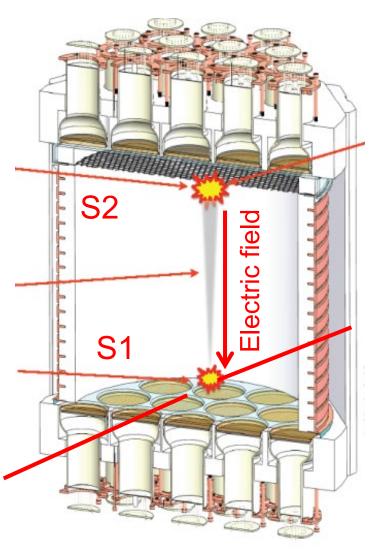


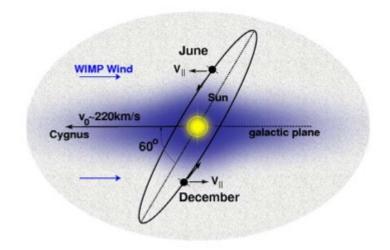
DIRECTIONALITY FOR NUCLEAR RECOILS IN A LIQUID ARGON TPC


L. Pandola (LNS) on behalf of the ReD Working Group (GADM Collaboration)

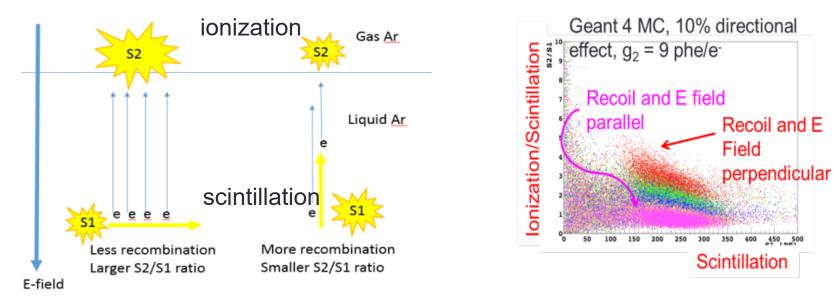

Physics background

- DarkSide program at Gran Sasso
 Laboratory, WIMPs search using dualphase Time Projection Chamber with low-radioactivity LAr
 - Operated a 50 kg TPC (DS-50)
 - In preparation: 50 ton TPC (DS-20k)
 - Novel light readout with SiPM
 - Pave way for next-generation (ARGO)

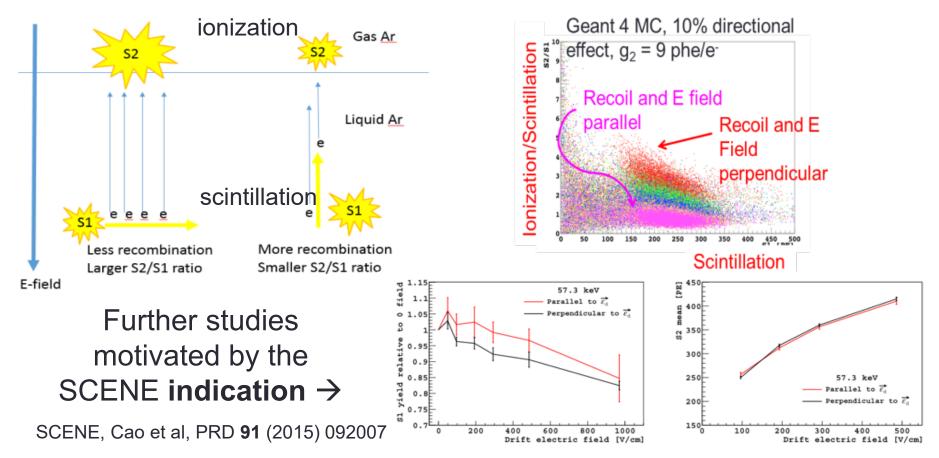
See talk by G. Testera



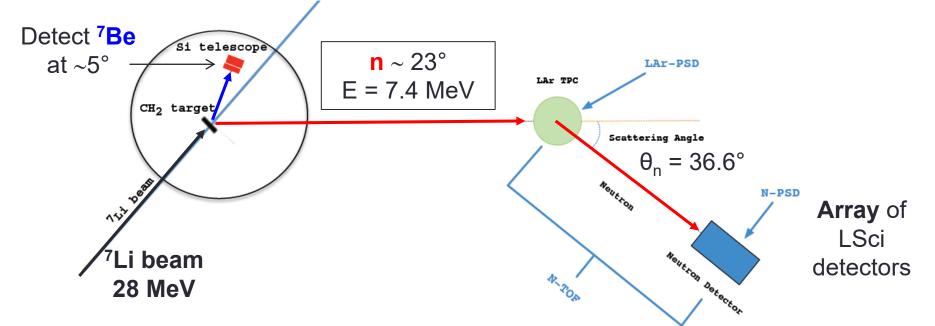
dark<mark>side</mark>


A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events
 - Statistical effect, but need only a few 100's of events
 JCAP 01 (2019) 014


A smoking gun for dark matter discovery

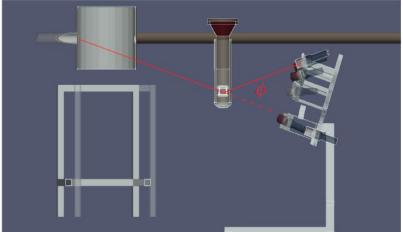
- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events
 - Statistical effect, but need only a few 100's of events
 JCAP 01 (2019) 014

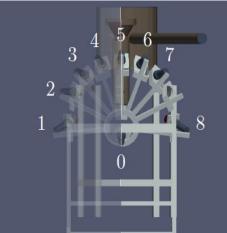

A smoking gun for dark matter discovery

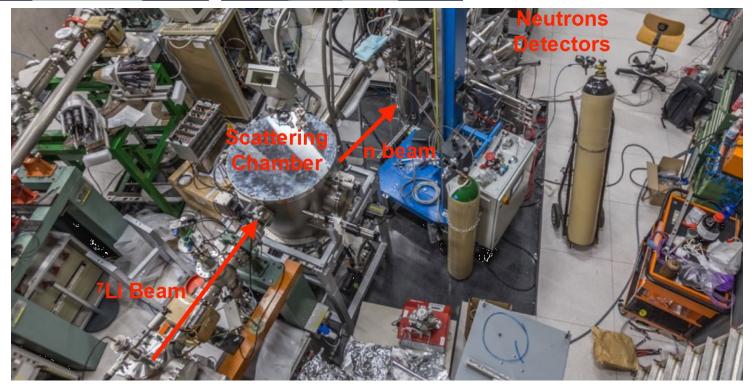
- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events
 - Statistical effect, but need only a few 100's of events
 JCAP 01 (2019) 014

ReD conceptual design

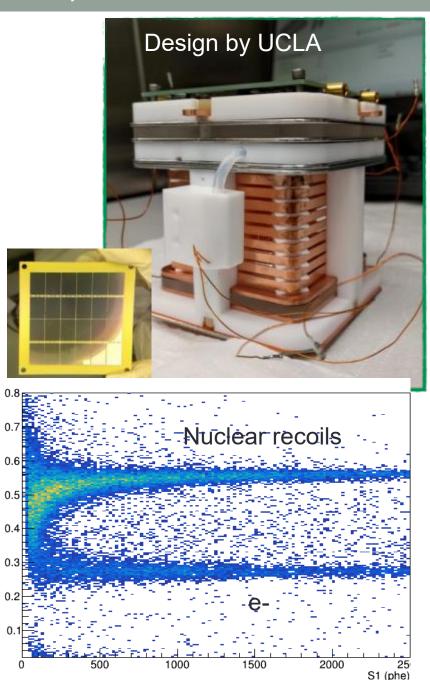
- ReD project to address this issue!
- Produce Ar recoils of known energy and direction in a TPC by using a suitable neutron beam
 - Can be done via p(⁷Li,⁷Be)n
 - ⁷Li beam from the TANDEM accelerator of INFN-LNS (Catania)
 - Detect the associate particle (⁷Be) to tag neutron energy event by event
- Detect neutrons elastically scattered off ⁴⁰Ar
 - Kinematics of (n,n') will fix energy and direction of the recoil




LP2021, January 11th 2022


...and actual implementation at

7

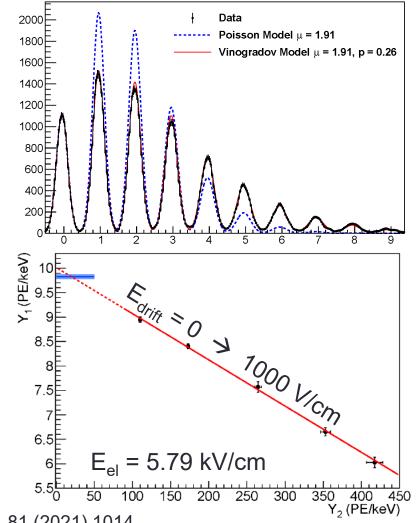


THE INGREDIENTS

SD parameter f

The TPC

- Miniaturized version of the DarkSide-20k TPC
 - Active volume: 5(L) x 5 (W) x 6 (H) cm
 - Gas pocket: 7 mm thick
 - TPB coating for wavelength shifting
- Light readout: 5x5 cm² SiPM (as for DS-20k), 30% coverage
 - 24x1cm² SiPM 24 ch readout (top), for increased (x,y) resolution
 - 24x1cm² SiPM, 4 ch readout (bottom)
- Front End from the DS-20k R&D
- 3D event reconstruction:
 - (x,y) from S2 pattern on the top SiPMs
 - z from drift time (up to ~60 µs)
- ER/NR discrimination by using PSD parameter f_{prompt} on S1
 - Fast/total ratio



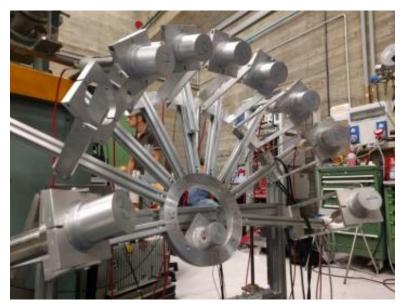
TPC Performance

 Detailed characterization of the TPC, prior to irradiation (Naples, 2019)

Calibration of SiPMs with laser

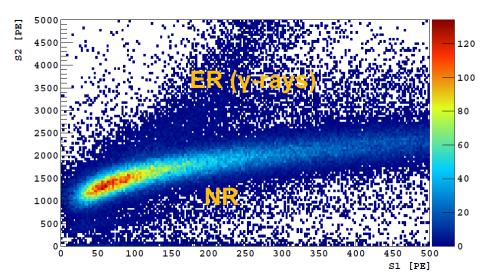
- Effect of after-pulses and x-talk ~30%
- System (w/ cold SiPM) stable for many months (< 1% rms in SER)
- Light response good 9.80(21) PE/keV at ²⁴¹Am and stable (< 2%)
 - Scintillation (S1) anti-correlated with charge (S2)

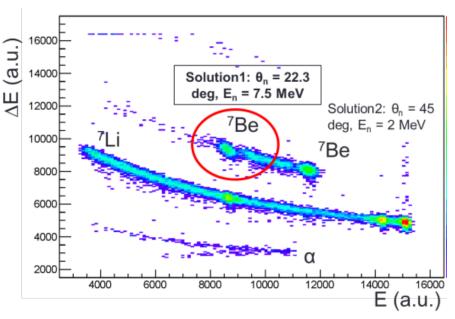
Agnes et al. EPJ C 81 (2021) 1014


- TPC performance appropriate for the directionality search
 - g₁ = 0.194 PE/ph, g₂ = 20.0 PE/e- (E_{drift} = 183 V/cm, E_{el}=5.79 kV/cm)
 - $\sigma_{S2/S1}$ better than 12% for NR of ~70 keV, electron lifetime > 1 ms

Si detectors & neutron spectrometer

- ΔE-E telescope to tag ⁷Be associated with neutrons
 - ΔE Si detector (25 µm), E Si detector (1000 µm)
 - Allows for Z separation (Li vs. Be)
 - Can be moved by a remotelycontrolled stepper motor
- ⁷Li beam on CH₂ target

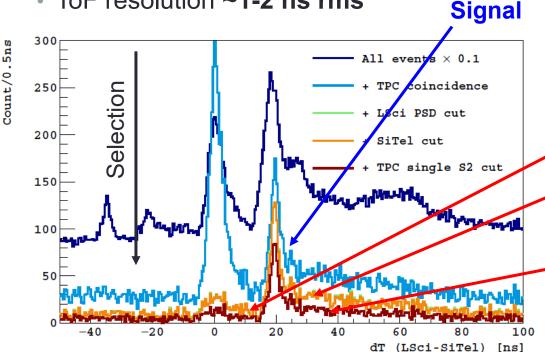

- 3-inch Liquid Scintillators cells (EJ-309), readout by PMTs
 - Featuring n/γ discrimination
 - Absolute calibration with ²⁵²Cf, ε~20-40% for 2-8 MeV neutrons
 - Time resolution ~0.5 ns rms
- Arrangement within a "ring" structure
 - Tagging ⁴⁰Ar recoils in the TPC at 0°, ±20°, ±40°, ± 90° wrt E_{drift}

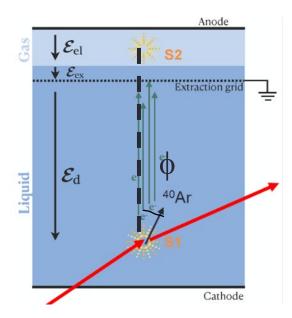


PUTTING ALL TOGETHER

ReD run @ LNS

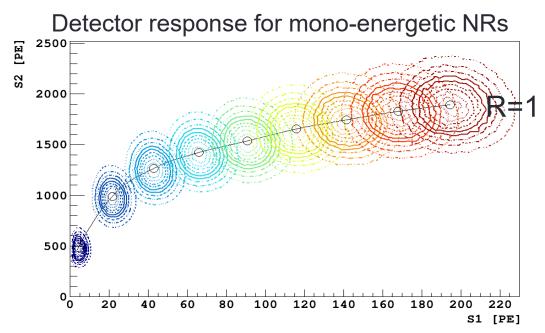
- Two-week beam time in February 2020 (= 10.07 days live time)
- ⁷Li beam delivered by LNS-TANDEM: 28 MeV
 - θ_n =22.3 deg, E_n=7.4 MeV \rightarrow TPC
- Energy/angles tuned to select ⁴⁰Ar recoils of ~70 keV in the TPC
 - Other recoils energies selected by changing the beam energy only




- Tagging of neutron events in the TPC by ⁷Be in the Si telescope
 - <u>Additional corrections</u>: XY-Z, pile-up, leakage current
 - Large sample of Ar recoil events in TPC

Signal and backgrounds

- Signal: single Ar recoils, of same energy but different ϕ
- Full three-fold coincidences (Si ^ TPC ^ n-Spectrometer)
 - About 150 events/day
- Very clean identification of events based on: ⁷Be tagging, timing and PSD (TPC and LSci)

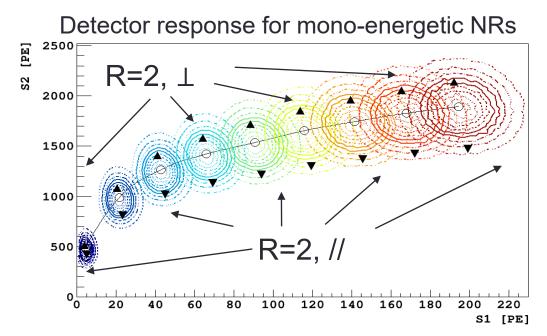


- Residual backgrounds:
 - Accidentals
 - $(n,n'\gamma)$ events in the TPC
 - Neutrons from p(⁷Li,⁷Be^{*})n
 - 63.5 keV recoils in the TPC
 - Neutrons with multiscattering

The directional model

Data intepretation needs a model for the directional effect

Model	Directional dependence	84	*
Thomas-Imel, Box ("short track") Phys. Rev. A 36 (1987) 614	None		
Jaffé-Birks ("infinitely long track") Ann Phys 347 (1913) 303	$[\sin \phi]^{-1}$	Sec.	$E_{\rm drift}$
Cataudella et al. JINST 12 (2017) P12002	$\left[\sqrt{\sin^2\phi + \cos^2\phi/R^2}\right]^{-1}$	θ	


- Single parameter R → aspect ratio of the e⁻-ion cloud
 - R=1 → no directional effect (Thomas-Imel)

a R+

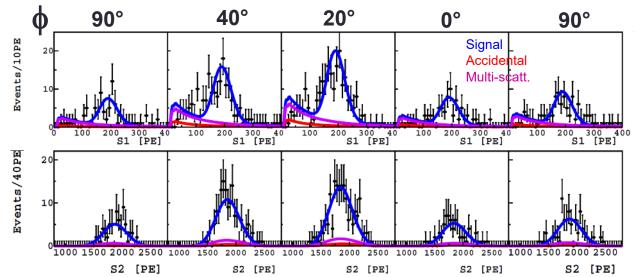
The directional model

Data intepretation needs a model for the directional effect

Model	Directional dependence	<u>844</u>	
Thomas-Imel, Box ("short track") Phys. Rev. A 36 (1987) 614	None		
Jaffé-Birks ("infinitely long track") Ann Phys 347 (1913) 303	$[\sin \phi]^{-1}$	Sec.	E_{drift}
Cataudella et al. JINST 12 (2017) P12002	$\left[\sqrt{\sin^2\phi+\cos^2\phi/R^2}\right]^{-1}$	θ	

- Single parameter R → aspect ratio of the e⁻-ion cloud
 - R=1 → no directional effect (Thomas-Imel)
- Impact on detector response → change S1 vs. S2 balance

Analysis and results


• Other ingredients:

- Fluctuations and correlations in the detector response (S1 & S2)
- Unbinned maximum likelihood fit
 - Nuclear recoil sample (Si ^ TPC) and triple coincidence data
 - <u>Components</u>: signal, multi-scattering, random coincidences
 - PDF from Geant4 simulations and/or data-driven (side bands)
 - Nuisance parameters (e.g. g₁, g₂,) constrained with pull terms

 R is the only parameter of interest

R = 1.036 ± 0.024 No effect (Preliminary!)

Conclusions and outlook

- ReD has a two-fold value as a physics experiment (directionality, and possibly low-energy characterization) and as a test bench for the DarkSide-20k new technologies
- Produce nuclear recoils by neutron scattering
 - Neutrons from p(⁷Li,⁷Be)n with a ⁷Li beam of 18-30 MeV
- Two-week run in February 2020 at LNS, with ⁷Li beam
 - Run tailored to directionality studies, $E_{Ar} \sim 70 \text{ keV} (E_n = 7.4 \text{ MeV})$
 - Data analysis according to the Cataudella et al. directionality model (parameter R → aspect ratio of the cloud)
- No evidence of directional effect at ~ 70 keV_{nr}

R = 1.036 ± 0.024 (Preliminary!)

- Information about directional sensitivity crucial for the design of the next-generation experiment ARGO by GADMC
- Future studies focused to low-energy response (< few keV)
 - Using ²⁵²Cf neutron source, currently under preparation at INFN Catania