

30th International Symposium on Lepton Photon Interactions at High Energies

DarkSide-20k and the Future Liquid Argon Dark Matter Program

Gemma Testera, on behalf of the GADM Collaboration (INFN Genova- Italy)

Direct search of Dark Matter with liquid Argon: GADMC Global Argon Dark Mater Collaboration

>500 people, about 100 Institutions Join the expertise about low background liquid Argon based detectors Multi step program towards WIMP dark matter detection

Gained experience

Future goal: ARGO@SNOLAB

Mini Clean

Snolab

Construction starts in 2022 Data taking from 2025 Nominal run time: 10 years

Conceptual studies in progress Nominal run time: 10 years (3 kt x year)

Expected DS20k sensitivity

Turquoise filled contours are from pMSSM11 model, E. Bagnaschi et al., Eur. Phys. J. C 78, 87 (2018).

Nuclear

Dual Phase TPC (Time Projection Chamber) and unique Ar pulse shape discrimination

Radiopure Ar from underground sources

- 39 Ar β decay, $t_{1/2}$ = 269 y
- End point: 570 keV
- Produced in the atmosphere ⁴⁰Ar(n,2n)
- ≈1 Bq/kg in Argon from atmospheric origin

DS50: extraction of Ar of underground origin (UAr)

³⁹Ar depletion factor: 1400+- 200

Extraction of 157 Kg of UAr (50 Kg fiducial mass)

DS20k filled with UAr + excellent Ar Pulse Shape Discrimination

The path towards radiopure Ar: URANIA +ARIA+DArT

Scale up the UAr extraction from ≈100 Kg to ≈100 t

See the poster of L. Luzzi

URANIA: UAr extraction

1

- CO₂ well in Cortez, CO, USA;
- Industrial scale extraction plant;
- UAr extraction rate: 250-330 kg/day;
- Purity 99.99%
- Plant ready to be shipped
- Civil work ongoing

ARIA: UAr distillation

Cryogenic distillation column in Sardinia (Italy)
bottom reboiler

- + 28 central modules (12 m each) 350 m in total
- + top condenser
- Chemical purification rate: 1 t/day
- First module operated according to specs with Nitrogen in 2019 Eur. Phys. J. C (2021) 81:359
- Run completed with Ar at the end of 2020: results to be published soon

DArT: Measurement of the activity of the ³⁹Ar

- LSC, Canfranc Spain
- Single-phase inner detector for 1.42 kg of liquid UAr
- Inside 1 tonne ArDM detector acting as an active veto for background radiation
- 39 Ar depletion factor sensitivity: U.L 90% CL. 6×10^4 2020 JINST 15 P02024.

Signal and Background

Signal

Nuclear recoil (NR): 1 to 100 keV

• Single scattering

Shape of the recoil spectrum
Annual modulation
Directionality (see previous talk of L. Pandola)

Background source	Mitigation strategy
³⁹ Ar β decay	Use Ar from Underground source (UAr) + Pulse Shape Discimination (PSD)
γ from rocks and γ , e- from materials	Pulse Shape Discrimination (PSD) Selection of materials & procedures
Neutrons Radiogenic n (α,n) with a from material contaminants	Material screening. Definition of Fiducial Volume in the TPC + active VETO to reject n signal.
Surface contamination due to Rn progeny	Surface cleaning Reduce the number of surfaces Installation in Rn abated air
Neutrino coherent scattering	irriducible

The design of the DS20k detector

Two-phase TPC LAr (WIMP target & detector)

filled with 50 t (20 t FV) low-radioactivity Ar from underground source (UAr)

• 21 m² cryogenic SiPMs (top and botton readout)

 TPC surrounded by a single phase (S1 only) detector (Veto) in UAr to identify and veto neutron signals

- 5 m² cryogenic SiPMs (Veto readout)
- Integration of TPC and VETO in a single object
- 99 t UAr in total contained in a hermetic Ti vessel
- TPC anode&cathode: transparent pure acrylic
- TPC lateral walls + additional top&bottom planes in Gd loaded acrylic (PMMA)
 - o to thermalize n (acrylic is H rich)
 - o high energy γ emitted by Gd after neutron capture
 - minimize the amount of material
- ≈650 t AAr in a membrane cryostat, proto-DUNE like
- 2 independent cryogenics purification loops
- Selection and screening of all the materials
- Dominant n background: (α ,n) with α from material contaminants

The design of the DS20k detector: more details

- Reflectors and wavelengh shifters
 - o inner TPC walls (TPC light)
 - outer TPC walls (Veto light)
 - innet Ti walls (Veto light)
- Cathode and anode coated with new transparent conductor (Clevios) and wavelength shifter
- TPC lateral walls: grooves with Clevios for shaping the field cage (no copper rings)

- Gas pocked 7.0±0.5 mm
- Drift field 200 V/cm
- Cathode -73.38 kV
- Extraction grid -3.78 kV
- >10 phe/keV in the TPC
- 2 phe/keV in the Veto

Veto working principle

n identification:

WIMP like event in the TPC (single cluster, PSD as Nuclear recoil 7.5 - 50 keV, r-z cut)

AND

event in the VETO with E>E_{th1} and /or event Electron Recoil in the TPC with E>E_{th2} within 800 μ s

2 recipes to produce a new material: Gd loaded PMMA

- Gd₂O₃: nanoparticle dispersion,
 Gd₂O₃ commercially available
- Gd(acac)₃ solution
- R&D in progress to setup the production of Gd(acac)₃

≈0.1 n/200 t y

from (α,n) reactions

Both are

- working at laboratory scale
- satisfying the radiopurity requirements
- under test with industry

Efficient suppression of the most dangerous n background: radiogenic neutrons

- Selection of materials
- Monte Carlo simulations
- Analysis cuts (TPC+Veto)
- 1% Gd by weight in acrylic
- Very low ineff.

2.2 10⁻⁶ for n coming from TPC SiPM, smaller for other n sources

12 cm tall, acrylic loaded with Gd_2O_3 , 2% Gd by weight

Veto working principle

12 cm tall, acrylic loaded with Gd_2O_3 , 2% Gd by weight

Nuclear

Photosensors: development of large area cryogenic SiPMs

+ measurements of Correlated Avalanche Direct Cross Talk

• • • •

and inclusion of the data in the detector Monte Carlo

- R&D concluded
- Full SiPM procurement in progress
- Delivery during the first months of 2022

Photosensors: grouping SiPMs into a large matrix

Development of cryogenic amplifiers (Trans Impedance Amplifier (TIA) scheme)

- Discrete elements
- ASIC
- Tested different solutions for assembling tiles into a large matrix, distribute power and control signals, route the output

- The first prototype
- 25 Tiles
- Separate PCBs for various functions
- Thick structure (15 cm thick)
- Discrete elements amplifiers
- 25 outputs

- 25 Tiles
- Separate PCBs for various functions
- Thin structure
- ASIC amplifier
- Sum of two amplified tile signals

- 16 Tiles
- Single PCB for Tile & amplifier+
- 1 large PCB for control signals
- Thin structure
- Discrete elements (for TPC) and 8 10000 ASIC (for Veto) amplifier 500
- Sum of 4 amplified tile signals
- 4 outputs

Baseline solution

Sensitivity to light dark matter candidates

High potential of Dual Phase TPC

S2 signal larger than S1

S2 only events allow to identify nuclear recoil with keV and sub keV energy Sensitivity to low WIMP mass values (few GeV)

- DarkSide-50 ionization-only analysis
 - world-best limit below 5 GeV/c2
 - ∘ recent new calibration of ionization response down to ~0.5 keVnr
 - soon new limits on WIMP-nucleon with/without Migdal, WIMPelectrons, solar and galactic axions, sterile neutrinos
- DarkSide-20k sensitivity evaluation in progress (with high statistics simulations, new observables under definition)

DS Coll. PRL 121 (2018) 081307, DS50 results

Sensitivity to core collapse supernova via CENuS

DS20k Coll, JCAP 2021 (2021)

- Detection based on the ionization signal only (S2)
- Threshold down to 0.4 keV_{nr}
- Coherent scattering:
 - neutrino flavor insensitive
 - highest neutrino cross section
- Advantages of CENvS in LAr TPC:
 - Sensitive to the entire unoscillated neutrino flux
 - Sensitive to the neutronization burst (the electronic flavor is highly suppressed by oscillations)

Sensitivity to the entire SN neutrino flux

Sensitivity to neutrinos from SN neutronization burst

Conclusions

- The Global Argon Dark Matter Collaboration (GADMC), with joint global expertise,
 has completed the R&D phase for the DS20k detector
- The Technical Design Report of the DS20k detector has been delivered to INFN on Dec 1, 2021
- Construction of the cryostat will start in 2022
- Full production of SiPMs already started
- URANIA & ARIA ongoing
- Several technologies have been developed :
 - o procurement of large amount (≈100 t) UAr
 - o acrylic TPC vessels
 - conductive polymers
 - wavelength-shifters
 - o reflectors
 - Gd-doped acrylic
 - cryogenics SiPMs
 - cryogenics low noise amplifiers
 - selection of low background materials
- Data taking expected in 2025

