

Hyper-Kamiokande: Status & Plans

Anthew MalekStripMatthew MalekStripThe University of Sheffield

30th International Symposium on Lepton Photon Interactions at High Energies 11th January 2022

• The Hyper-Kamiokande Experiment

- Design overview
- Current status
- Particle Physics
 - Neutrino oscillation
 - Proton Decay
- Astroparticle Physics
 - Supernovae
 - Dark matter detection

The Kamioka Trilogy

Kamiokande

- 1983 1996
- 3 ktonnes total
- 680 tonnes fiducial

The Kamioka Saga Continues!

Super-Kamiokande

• 1996 – ??

- 50 ktonnes total
- 22.5 tonnes fiducial
 33x K

Hyper-Kamiokande

- 2027 ??
- 260 ktonnes total
- 190 tonnes fiducial
 - 8x Super-K

11 Jan 2022

Hyper-K Fact Sheet

Location:

- Tochibora mine (Mt. Nijugoyama)
- 650m overburden (1755 m.w.e.)

Size:

- 71m (height) x 68m (diameter)
- 260 ktonnes total
- 188 ktonnes fiducial

Photosensors:

- 20% photocathode coverage with new 50cm Hamamatsu 'box & line' PMTs
 - 1ns TTS; half that of SK PMTs
 - Quantum efficiency <u>double</u> that of SK PMTs.
- Supplemented by additional arrays of 3" multi-PMT (mPMT) assemblies

Hyper-K Status

2015: Proto-Collaboration formed2016: Design Report submitted2020: Funding in place2021: Tunnel excavation started

2027: Begin data taking!

Physics Overview

Broad physics programme

- Neutrino oscillation
 - Atmospheric neutrinos (still statistics limited!)
 - Accelerator neutrinos
 - \rightarrow focus on CP violation & mass ordering
 - Solar neutrinos
- Proton decay
- Neutrino astrophysics
 - Supernova burst
 - O(10,000) events expected @ 10 kpc
 - Supernova relic neutrinos
- Additional astrophysical topics
 - Dark matter
 - Indirect WIMP searches
 - Multimessenger astronomy
 - Gamma ray burst searches

Beam Programme

Much larger detector \rightarrow significantly higher statistics \rightarrow need better systematics

- Improved near detector (ND280) at Tokai
- New "Intermediate Water Cherenkov Detector"
 - See talk by Nick Prouse later today (17:50)

CP Violation

Sensitivity to exclude $\delta_{CP} = 0$

Also:

 Neutrino mass ordering may be resolved by combining accelerator and atmospheric neutrinos at Hyper-Kamiokande (multi-baseline)

Proton Decay

In a water Cherenkov detector, a typical signal looks like:

- Three rings (all electron-like)
- Total energy close to Mp
- Unbalanced momentum close to 0.

At this scale, previously negligible backgrounds from atmospheric neutrinos start to limit sensitivity.

Proton Decay

11 Jan 2022

Supernova Neutrinos

Stars with M > 8 M \odot end as a core-collapse supernova when nuclear fuel exhausted:

All 6 v species produced; most likely to detect in WC is $\overline{v}e$ via inverse beta decay (89%):

Supernova Neutrinos

Supernova model discrimination via maximum likelihood analysis:

11 Jan 2022

Supernova Neutrinos

Using a water Cherenkov detector w/ 20% photocathode coverage and collecting 300 ν events:

	Identified as							
True model	Normal	Couch	Nakazato	Tamborra	Totani	Vartanyan		
	Couch	982	2	16	0	0		
	Nakazato	1	999	0	0	0		
	Tamborra	16	0	980	2	2		
	Totani	0	0	0	1000	0		
	Vartanyan	0	0	0	0	1000		

Inverted Co		Couch	Nakazato	Tamborra	Totani	Vartanyan			
True model	Couch	999	1	0	0	0			
	Nakazato	0	1000	0	0	0			
	Tamborra	0	0	974	1	25			
	Totani	0	0	0	1000	0			
	Vartanyan	0	0	8	0	992			

Published last year in Astrophysical Journal (ApJ 916:15, 2021)

11 Jan 2022

Figures taken from Hyper-K design report

 \rightarrow further improvement possible using flavour information

11 Jan 2022

Summary (1)

Hyper-Kamiokande: Kamioka's Next Generation

- Improved statistical power of 8x Super-Kamiokande
- New technologies incorporated (*e.g.*, better photosensors, intermediate WC detector)

Particle physics goals

- Neutrino oscillation
 - Accelerator programme ("T2HK") will have world-leading sensitivity to leptonic CP violation
 - Joint analysis with atmospheric neutrinos gives strong sensitivity to resolving mass ordering
- Proton decay

Astroparticle physics goals

- Supernova neutrinos (burst and relic)
- Also: Indirect searches for dark matter, solar neutrinos, multimessenger astronomy, etc.

Status

- Construction phase has begun, with tunnel excavation underway
- Expect to see first data circa 2027

Kamiokande

- 1983 1996
- 3 ktonnes total
- 680 tonnes fiducial

987: Supernova v (2002 Nobel)

The Trilogy's Conclusion?

Super-Kamiokande

• 1996 – ??

Hyper-Kamiokande

- 2027 ??
- 260 ktonnes total
- 190 tonnes fiducial
 8x Super-K

203X: Leptonic CPV? Indirect DM? Proton decay??