A New Approach to Probe Non-Standard Interactions in Atmospheric Neutrino Experiments

Anil Kumar, Amina Khatun, Sanjib Kumar Agarwalla, Amol Dighe
* IOPB, India, b SINP, India, c HBNI, India, d Comenius University, Slovakia, e ICTP, Italy, f TIFR, India

The Iron Calorimeter (ICAL) detector at the proposed India-based Neutrino Observatory (INO) [1] can play a key role in constraining non-standard interactions over a multi-GeV range of energies.

ICAL@INO: 50 kton magnetized iron detector

Active detector element: RPC, **Passive detector element**: iron

Uniqueness: CFD for muons, distinguishes v_μ and \bar{v}_μ

Muon energy range: 1 – 25 GeV, Muon energy resolution: ~ 10%

Baselines: 15 – 12000 km, Muon zenith angle resolution: ~ 1°

Non-Standard Interactions (NSI)

Neutral-current NSI in propagation through matter

\[\mathcal{L}_{\text{NC-NSI}} = -2\sqrt{2} G_F e^2 \bar{\psi}(i\gamma_\mu P_\mu - i\gamma_\nu P_\nu f)(\gamma_\nu P_\nu f) \]

where, \(P_\mu = (1 - \gamma_\mu)/2, P_\nu = (1 + \gamma_\nu)/2 \) and \(C = L, R \).

\[\epsilon_{\alpha\beta} = \sum_{f=e,\mu,\tau} \frac{V_f}{V_{CC}} \left(\epsilon_{gf}^\ell + \epsilon_{gf}^\nu \right) \]

where, \(V_{CC} = \sqrt{2} G_F N_c, V_f = \sqrt{2} G_F N_f, f = e, u, d \).

\[H_{\text{mat}} = \sqrt{2} G_F N_c \left[1 + \epsilon_{\mu\tau} \epsilon_{\mu\mu} + \epsilon_{\tau\tau} \right] \]

In atmospheric neutrinos, $\mu \rightarrow \tau$ channel is dominant, hence, we choose to constrain $\epsilon_{\mu\tau}$ (only real values).

Methodology

- NUANCE neutrino event generator
- Neutrino flux at INO site
- Three-flavor matter oscillation with the PREM profile
- Migration matrices for muons from GEANT4 simulation of ICAL
- Ratio of upward-going (U) and downward-going (D) reconstructed muon events

U/D ratio (defined for $\cos \theta_{23}^{\text{rec}} < 0$)

\[\frac{U/D}{E_{\text{rec}}^{\cos \theta_{23}^{\text{rec}}} = \frac{N(E_{\text{rec}}^{\mu} \cos \theta_{23}^{\text{rec}})}{N(E_{\text{rec}}^{\mu} \cos \theta_{23}^{\text{rec}})} \]

where, \(N(E_{\text{rec}}^{\mu} \cos \theta_{23}^{\text{rec}}) \) is the number of events with energy \(E_{\text{rec}}^{\mu} \) and zenith angle θ_{23}^{rec}.

The oscillation valley [2] bends in the presence of NSI parameter $\epsilon_{\mu\tau}$ [3]

Summary and Conclusion

- Using good reconstruction efficiency at ICAL for μ^- and μ^+, oscillation dip and oscillation valley can be observed in reconstructed muon observables at ICAL.
- We propose a new approach to utilize oscillation dip and oscillation valley to probe neutral-current NSI parameter $\epsilon_{\mu\tau}$.
- A new variable representing the difference in the shifts in location of dips for μ^- and μ^+ is used to constrain NSI parameter $\epsilon_{\mu\tau}$.
- The contrast in the curvatures of valleys for μ^- and μ^+ is also used to constrain NSI parameter $\epsilon_{\mu\tau}$.

References

