T2K Status and Plans

Tristan Doyle t.doyle@lancaster.ac.uk on behalf of the T2K collaboration

Tuesday 11th January 2022

Lepton Photon 2021

- E

T2K Status and Plans

Neutrino Oscillations

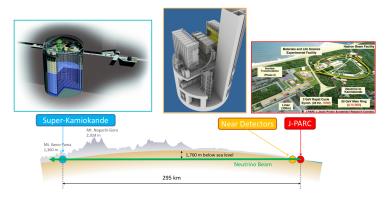
Oscillations characterised by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$s_{ij} = \sin \theta_{ij}, \ c_{ij} = \cos \theta_{ij}$$

Leads to oscillation probabilities of the form:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27 \frac{\Delta m_{31}^{2} [\text{eV}^{2}] L[\text{km}]}{E_{\nu} [\text{GeV}]} \right)$$


to 0th order, δ_{CP} dependence present at higher orders

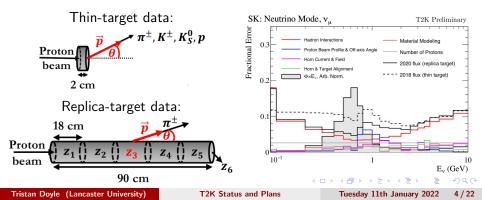
Unanswered Questions: what is the value of δ_{CP} ? what is the neutrino mass ordering? in which octant is θ_{23} ?

Tristan Doyle (Lancaster University)

T2K Status and Plans

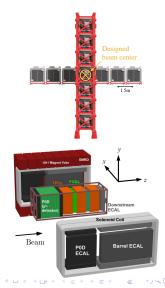
The T2K Experiment

- World-leading measurements of θ_{23} , Δm^2_{32} and δ_{CP}
- \bullet Improved measurements of θ_{13} from accelerator neutrinos
- Limited sensitivity to neutrino mass ordering
- Neutrino cross section measurements
- Searches for exotic phenomena

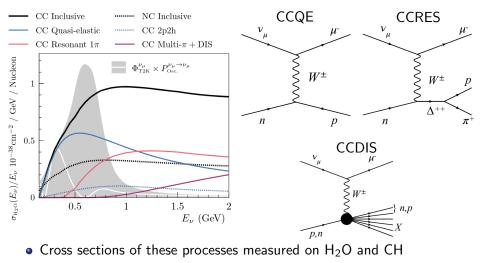

Tristan Doyle (Lancaster University)

T2K Status and Plans

< ロ > < 同 > < 回 > < 回 >


T2K Beam: Flux Model

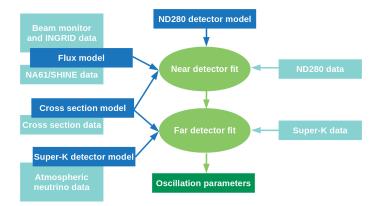
- Use NA61/SHINE hadron production data to inform flux model
- Previously used only thin-target data <u>Eur. Phys. J. C 76, 84 (2016)</u>
- Latest analysis also uses T2K replica-target data Eur. Phys. J. C 76, 617 (2016)
 - $\rightarrow\,$ Reduces flux uncertainty from ${\sim}10\%$ to ${\sim}5\%$ in flux peak
 - ightarrow Will use even more replica-target data in next oscillation analysis



Near Detectors

- 280 m downstream of beam target
- INGRID: on-axis detector
 - $\rightarrow\,$ Monitor beam intensity, direction & stability
 - $\rightarrow~$ Constrain flux systematics
- ND280: off-axis detector
 - $\rightarrow~2.5^\circ$ off-axis like Super-K
 - $\rightarrow\,$ Consists of several sub-detectors in a 0.2 T magnetic field
 - \rightarrow Measure neutrino interactions, intrinsic ν_e contribution and wrong-sign background
 - $\rightarrow\,$ Constrain flux and cross section uncertainties

Near Detector Cross Section Measurements

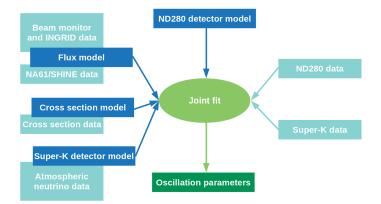


• 7 new cross section results published in last two years

Tristan Doyle (Lancaster University)

T2K Status and Plans

Oscillation Analysis Strategy



- Frequentist oscillation analyses: first fit to near detector data, then fit to Super-K data
- Both fitting approaches produce consistent results

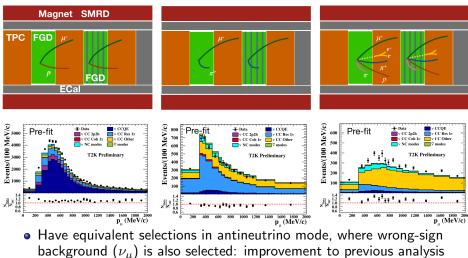
Tristan Doyle (Lancaster University)

T2K Status and Plans

Oscillation Analysis Strategy

- Bayesian oscillation analysis: simultaneous fit to near and far detector data
- Both fitting approaches produce consistent results

Tristan Doyle (Lancaster University)


T2K Status and Plans

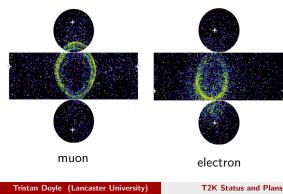
Near Detector Oscillation Samples

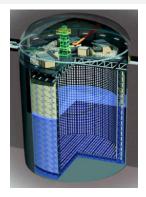
$CC0\pi$

CC-Other

ightarrow Gives 18 near detector samples in total

Tristan Doyle (Lancaster University)

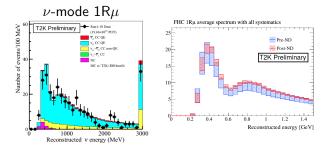

T2K Status and Plans


8 / 22

< ロ > < 同 > < 回 > < 回 >

Super-Kamiokande

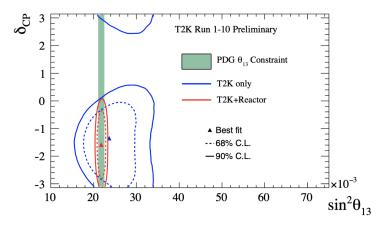
- 2.5° off-axis
- 50 kton water Cherenkov detector
- Being loaded with Gd₂(SO₄)₃ to improve neutron tagging efficiency
 - $\rightarrow \sim 90\%$ capture, $\sim 90\%$ reconstruction



- Excellent particle identification capability
- < 1% μ mistaken as e
- μ produce sharp rings
- e produce fuzzy rings Tuesday 11th January 2022

Far Detector Oscillation Samples

- 5 far detector samples:
 - 1 μ -like ring, 1R μ , in ν and $\bar{\nu}$ modes
 - 1 *e*-like ring, 1R*e*, in ν and $\bar{\nu}$ modes
 - 1 e-like ring + Michel electron ring, 1Re1de, in ν-mode

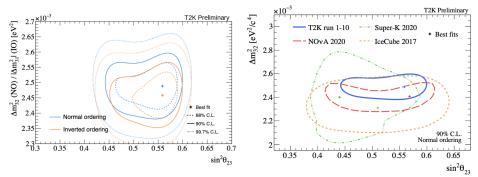

Systematic uncertainties are constrained by near detector (ND) fit:

Systematic	$1 R \mu$			1Re		
Uncertainty	u-mode	$\bar{\nu}$ -mode	u-mode	$\bar{\nu}$ -mode	$ u$ -mode CC1 π^+	
Pre-ND	11.1%	11.3%	13.0%	12.1%	18.7%	
Post-ND	3.0%	4.0%	4.7%	5.9%	14.3%	

10 / 22

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Measuring θ_{13}



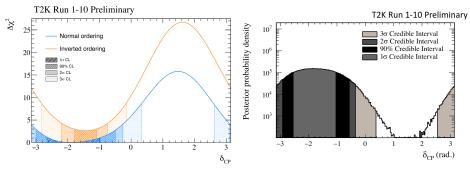
- Measure θ_{13} with and without external reactor constraint (PDG 2019)
- Good agreement between T2K result and reactor data
- When studying other PMNS parameters, reactor constraint is included

Tristan Doyle (Lancaster University)

T2K Status and Plans

Measuring θ_{23} and Δm_{32}^2

Slight preference for upper octant and normal ordering


Posterior Probability	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum
NO $(\Delta m_{32}^2 > 0)$	0.195	0.613	0.808
IO $(\Delta m_{32}^2 < 0)$	0.035	0.157	0.192
Sum	0.230	0.770	1.000
		<pre>< D > < D > <</pre>	ヨト・モト

Tristan Doyle (Lancaster University)

T2K Status and Plans

Tuesday 11th January 2022

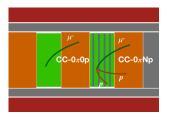
CP-Violation

• 35% of values excluded at 3σ , marginalised across mass orderings

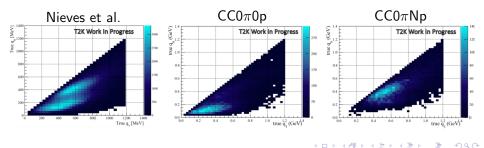
- CP-conserving values $(0,\pi)$ excluded at 90%, π not quite at 2σ
- Have demonstrated robustness of fit against wide range of biases
 - \rightarrow Largest $\Delta\chi^2$ changes seen would cause left (right) edge of 90% interval to move by 0.073 (0.080), and conclusions would remain the same

(4 同) 4 ヨ) 4 ヨ)

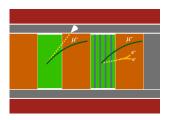
Going Beyond the 2020 Result

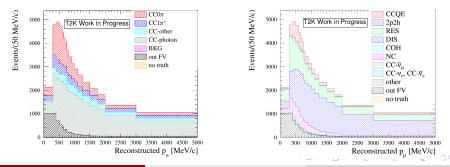

Tristan Doyle (Lancaster University)

T2K Status and Plans

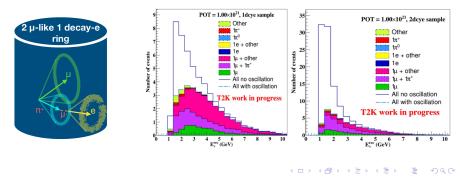

Tuesday 11th January 2022 14 / 22

< 同 > < 国 > < 国 >

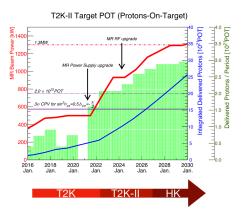

New Samples in Oscillation Analysis: Near Detector


- Split CC0 π sample based on presence or absence of **protons**
- Different sensitivity to nuclear effects:
 - $\rightarrow\,$ Nieves et al. model describing 2p2h interactions has two peak structure

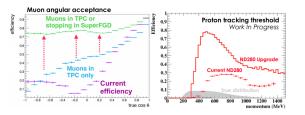
New Samples in Oscillation Analysis: Near Detector


- Isolate CCπ⁰ interactions by looking for photons in the ECals and TPCs
- Dominated by DIS (30%) and multi-pion production (20%), with contribution from resonant π^0 production (24%)
- Improves purities of other ND samples

T2K Status and Plans


New Samples in Oscillation Analysis: Far Detector

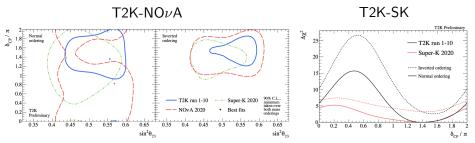
- u_{μ} CC events with 2 μ -like rings and 1 or 2 decay-e
- $\bullet~{\sim}20\%$ more events selected at SK
- Expected to give slight increase in sensitivity to θ_{23} and $|\Delta m^2_{32}|$
- Complementary sample to other SK pion sample


Beam Upgrade

- Beam stable at 515 kW during last run
- Main ring power supply upgrade
 → Expect beam power > 800 kW
- RF upgrade and machine development
 - $\rightarrow\,$ Expect beam power $> 1\,\text{MW}$ by 2027

ND280 Upgrade: Coming 2022

- Replace PØD with:
 - \rightarrow SuperFGD: 2 million 1 cm cubes of scintillator with individual readout
 - $\rightarrow\,$ High Angle TPCs equipped with resistive MicroMegas
 - \rightarrow Time-of-Flight detectors



- Improved efficiency
- Lower proton threshold
- Neutron kinematics

< ロ > < 同 > < 回 > < 回 >

- Increased target mass
- Reduction of key systematic uncertainties

Joint Fits

- Two joint fits with other experiments currently ongoing
- Combining data from experiments of different energies and baselines
- Joint fits are crucial to breaking degeneracies and understanding systematic correlations between experiments
- Allows consistent statistical treatment using full experiment likelihoods with all oscillation parameters correlated


• • = • • = •

Summary

- T2K is producing world-leading measurements of PMNS parameters
- 7 cross section results published in the last two years
- Latest oscillation results show:
 - $\rightarrow\,$ CP-conservation is excluded at 90%
 - $\rightarrow\,$ There is slight preference for normal ordering and upper octant
- New near and far detector samples coming in next oscillation analysis
 - $\rightarrow\,$ And even more samples coming in future iterations!
- Beam and ND280 upgrades in coming years
- Many more developments I didn't have time to discuss:
 - ightarrow Increased statistics latest data taken with SK-Gd (0.01%)
 - \rightarrow New off-axis detectors: WAGASCI and Baby-MIND
 - ightarrow New cross section model and measurements

・ロト ・ 一下 ・ ト ・ ト ・ ト

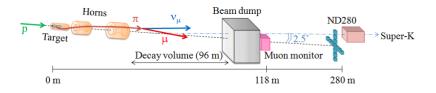
Thank You!

Tristan Doyle (Lancaster University)

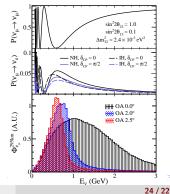
T2K Status and Plans

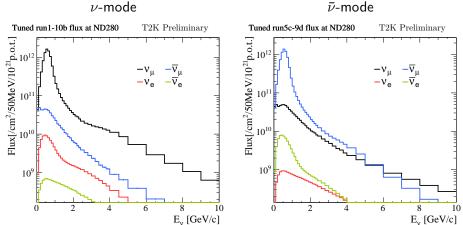
Tuesday 11th January 2022 22 / 22

э


<ロト < 同ト < ヨト < ヨト

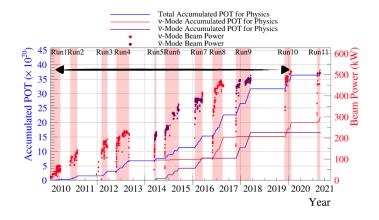
BACKUP


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで


The T2K Beam

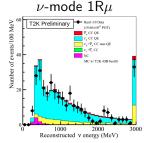
- 30 GeV proton beam extracted from J-PARC main ring onto graphite target
 - $\rightarrow\,$ Produces hadrons: mostly pions and kaons
- Hadrons are charge-selected and focused by three magnetic horns
 - $\rightarrow\,$ Select positive hadrons to produce predominantly ν_{μ} beam
 - $\rightarrow\,$ Select negative hadrons to produce predominantly $\bar{\nu}_{\mu}$ beam
- \bullet Beam directed 2.5° away from Super-K

Beam Composition

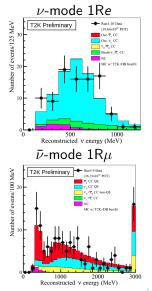


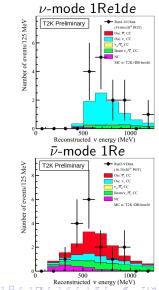
 $\bar{\nu}$ -mode

BACKUP

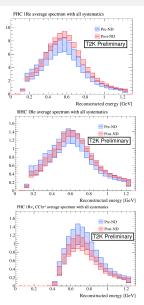

.∋...>

T2K Data Collection

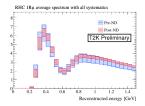



- Total POT = 3.8×10^{21}
- ν -mode 2.2 × 10²¹ (56.8%); $\bar{\nu}$ -mode 1.6 × 10²¹ (43.2%)
- \bullet Oscillation results presented use 3.6 $\times\,10^{21}$ POT

Far Detector Oscillation Samples



- 5 far detector samples:
 - 1 μ -like ring, 1R μ , in ν and $\bar{\nu}$ modes
 - 1 *e*-like ring, 1R*e*, in ν and $\bar{\nu}$ modes
 - 1 e-like ring + Michel electron ring, 1Re1de, in ν-mode



Impact of Near Detector Fit

Systematic	$1 R \mu$			
Uncertainty	u-mode	$\bar{\nu}$ -mode		
Pre-ND	11.1%	11.3%		
Post-ND	3.0%	4.0%		

Systematic		1R	e	
Uncertainty	ν -mode	$\bar{\nu}$ -mode	$\nu\text{-mode CC1}\pi^+$	
Pre-ND	13.0%	12.1%	18.7%	
Post-ND	4.7%	5.9%	14.3%	

<ロト <回ト < 回ト < 回ト < 回ト -

BACKUP

Impact of Near Detector Fit

Pre-fit Systematic Uncertainties

Systematic	$1R\mu$		1R <i>e</i>		
Source	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	$ u$ -mode CC1 π^+
Flux	5.1%	4.7%	4.8%	4.7%	4.9%
Cross section (all)	10.1%	10.1%	11.9%	10.3%	12.0%
SK+SI+PN	2.9%	2.5%	3.3%	4.4%	13.4%
Total	11.1%	11.3%	13.0%	12.1%	18.7%

Post-fit Systematic Uncertainties

Systematic	$1 R \mu$		1R <i>e</i>		
Source	u-mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	$ u$ -mode CC1 π^+
Flux	2.9%	2.8%	2.8%	2.9%	2.8%
Xsec (ND constr)	3.1%	3.0%	3.2%	3.1%	4.2%
Flux+Xsec (ND constr)	2.1%	2.3%	2.0%	2.3%	4.1%
Xsec (ND unconstrained)	0.6%	2.5%	3.0%	3.6%	2.8%
SK+SI+PN	2.1%	1.9%	3.1%	3.9%	13.4%
Total	3.0%	4.0%	4.7%	5.9%	14.3%

(ロ > 《 郡 > 《 臣 > 《 臣 > ― 臣 ― のの(