SEARCH FOR K⁺ DECAYS TO A LEPTON AND INVISIBLE PARTICLES

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Federal Ministry of Education and Research

Rainer Wanke

Lepton Photon 2022 Manchester, UK

Jan 11th, 2022

Outline

Rainer Wanke

Lepton Photon 2022 (Manchester)

2

Jan 11th, 2022

Heavy Neutral Leptons (HNLs) and the vMSM

Standard Model very successful, but fails to explain:

- Neutrino masses
- Baryon asymmetry
- Dark matter

→ vMSM extension ("neutrino minimal SM extension", Asaka, Shaposhnikov, PLB 620 (2005) 17

- Introduce 3 right-handed (sterile) neutrinos N_i which may mix with the classical, active neutrinos.
- N_2 and N_3 masses of $\mathcal{O}(100 \text{ MeV} 100 \text{ GeV})$.
- Yukawa couplings in the range 10^{-11} to 10^{-6} .

$$\nu_{\alpha} = \sum_{i}^{3+k} U_{\alpha i} \nu_{i} \quad (\alpha = e, \mu, \tau); \ k = 3$$

See-saw mechanism with lightest N_1 mass of $\mathcal{O}(10 \text{ keV}) \rightarrow dark matter candidate.$

HNL Production in K⁺ Decays

rate proportional to the mixing parameters $|U_{l4}|^2$ (only considering k = 1 here).

- Masses up to 0.5 GeV are observable in Kaon decays.
- Master formula: (Shrock, PLB 96 (1980) 159)

$$\mathcal{B}(K^+ \to \ell^+ N) = \mathcal{B}(K^+ \to \ell^+ \nu) \cdot \rho$$

O(1)

- → Kinematic factor effectively cancels helicity suppression in electron channel!
- \rightarrow Branching fractions $K^+ \rightarrow$ HNLs = $\mathcal{O}(\text{mixing parameter})$

If HNLs exist, they would be produced in processes containing active neutrinos with a

The NA62 Experiment

Fixed target Ka

Main goal:

Rainer Wanke

The NA62 Beam and Detector

Magnet

RICH

Beam

Spectrometer

Lepton Photon 2022 (Manchester)

Target

Jan 11th, 2022

Rainer Wanke

Lepton Photon 2022 (Manchester) Jan 11th, 2022

Rainer Wanke

Lepton Photon 2022 (Manchester) Jan 11th, 2022

Lepton Photon 2022 (Manchester) Jan 11th, 2022

Lepton Photon 2022 (Manchester)

Jan 11th, 2022

Data Collection

Statistics, up to CERN Long Shutdown 2:

- **2016:** 30 days, 40% of nominal intensity, 2×10^{11} useful kaon decays. 2017: 161 days, 60% of nominal intensity, 2 × 10¹² useful kaon decays.
- 2018: 217 days, 60% of nominal intensity, 4 × 10¹² useful kaon decays.

Trigger streams:

- $K^+ \rightarrow \pi^+ v \bar{v}$ trigger: 1 track, γ/μ veto, used for e^+ channels. No downscaling.
- Control trigger/400: Single charged particle in the CHOD acceptance (minimum bias), used for μ^+ channels. Downscaled by D = 400.

Searches for HNLs in $K^+ \rightarrow e^+ N$ and $K^+ \rightarrow \mu^+ N$ Decays

Rainer Wanke

Lepton Photon 2022 (Manchester) Jan 11th, 2022

Search for $K^+ \rightarrow e^+N$ and $K^+ \rightarrow \mu^+N$

Measurement of squared missing mass from K⁺ and *lepton* 4-momenta:

 $m_{\rm miss}^2 = (p_{K^+} - p_{lepton})^2$ = mass² of invisible particle

 \rightarrow HNL signal: sharp peak in m_{miss}^2 spectra.

Selections & reconstruction fairly simple:

- K⁺ and I⁺ reconstruction & matching.
- Powerful particle ID (RICH, LKr, MUV).
- Vetoing of extra activity.

Lepton Photon 2022 (Manchester) Jan 11th, 2022

0.1

Search for $K^+ \rightarrow e^+ N$

HNL search region

t⁺→μ⁺ν (upstream)

Events / (

 10^{4}

Data/WC 1.15

1.05

0.9

0.85

0.8

SM

region

 $K^+ \rightarrow \mu^+ v$

0.05

0.05

with **u⁺ → e⁺v**v

0.1

0.15

0.2

).15 0.2 m²_{miss} [GeV²/c⁴]

0.15

Search for $K^+ \rightarrow \mu^+ N$

Search for $K^+ \rightarrow e^+N$ and $K^+ \rightarrow \mu^+N$

Measurement of squared missing mass from K⁺ and *lepton* 4-momenta:

 $m_{\rm miss}^2 = (p_{K^+} - p_{lepton})^2$ = mass² of invisible particle

 \rightarrow HNL signal: sharp peak in m_{miss}^2 spectra.

NA62 data:

	$K^+ \rightarrow e^+ N$	$K^+ ightarrow \mu^+ N$
Trigger	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	control (D=400)
<i>N_K</i> in fiducial volume	3.5×10^{12}	1.1×10^{10}
Selected SM decays	3.5 × 10⁶	2.2 × 10 ⁹

Lepton Photon 2022 (Manchester)

Jan 11th, 2022

Search for $K^+ \rightarrow e^+N$

Limits on $K^+ \rightarrow e^+N$ and $K^+ \rightarrow \mu^+N$

Step size

- Scan m²_{miss} spectra over possible HNL masses, based on the missing-mass resolution $\sigma(m_{miss}^2)$:
 - The scan is performed in step sizes of O(1 MeV) (depending on the mass or mass resolution).
 - At each scanned mass, a window of $\pm 1.5 \sigma$ is put around the scanned mass value and the expected (SM) events are obtained from a polynomial fit to the sidebands.
 - Limits on $|U_{e4}|^2$ and $|U_{\mu4}|^2$: CL_s comparison between observed and expected event numbers in each window.

Limits on $K^+ \rightarrow e^+N$ and $K^+ \rightarrow \mu^+N$

- Less sensitivity close to the π^+ decay threshold (stricter selection).
- Maximum significance: **3.6** σ for m_N = 346 MeV.
- Accounting for look-elsewhere effect: **Global significance = 2.2 \sigma**.

Local significance never exceeds 3 σ . → no HNL production signals observed.

Results of HNL Searches

- No HNL signals observed in NA62.
- Limits on $|U_{e4}|^2$ of $\mathcal{O}(10^{-9})$, limits on $|U_{\mu4}|^2$ of $\mathcal{O}(10^{-8})$.

$\blacktriangleright K^+ \rightarrow e^+ N:$

Values favored by *Big Bang Nucleosynthesis (BBN) constraint* (dashed red line) are excluded for HNL masses < 340 MeV.

$\blacktriangleright K^+ \rightarrow \mu^+ N:$

Consistent with E949 and extending limits to higher HNL masses

Lepton Photon 2022 (Manchester) Jan 11th, 2022

[1 1 7 7

Rainer Wanke

Lepton Photon 2022 (Manchester)

Searches for $K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$ and $K^+ \rightarrow \mu^+ \nu X$

$K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$:

Very rare in the Standard Model: Br $\approx 1.6 \times 10^{-16}$

(Gorbunov, Mitofanov, JHEP 10 (2016) 039).

Current limit: Br < 2.4 × 10⁻⁶ (E949, PRD 94 (2016) 032012).

$K^+ \rightarrow \mu^+ \nu X$:

X is a scalar or vector particle (Krnjaic et al., PRD 124 (2020) 041802).

Lepton Photon 2022 (Manchester) Jan 11th, 2022

Searches for $K^+ \rightarrow \mu^+ v v \bar{v}$ and $K^+ \rightarrow \mu^+ v X$

$K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$:

- Search region: $m_{\text{miss}}^2 > 0.1 \,\text{GeV}^2/c^4$ (optimized for strongest limit extraction).
- Observed events: 6894 MC expectation: 7549 ± 92
 - → Br($K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$) < 1.0 × 10⁻⁶ at 90% CL.

$K^+ \rightarrow \mu^+ \nu X$:

- Limit extraction similar to $K^+ \rightarrow \mu^+ N$ in the mass range 10 - 370 MeV.
- No signal observed.
- Upper limits of $\mathcal{O}(10^{-7} 10^{-5})$.

(PLB 816 (2021) 136259)

Jan 11th, 2022

Conclusions & Outlook

- ► World-best limits on HNL mixing parameters with full NA62 data set before LS2: → $\mathcal{O}(10^{-9})$ limits on $|U_{e4}|^2$, $\mathcal{O}(10^{-8})$ limits on $|U_{\mu4}|^2$ (PLB 807 (2020) 135599, PLB 816 (2021) 136259).
- Searches for $K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$ and $K^+ \rightarrow \mu^+ \nu X$ performed: Again world-best limits of $\mathcal{O}(10^{-7}) - \mathcal{O}(10^{-9})$ (PLB 816 (2021) 136259).
- In 2021 NA62 started new data-taking period covering the full time up to LS3.
 → Running at 30% higher beam intensity and collect O(10¹³) K⁺ decays.
 → Plan to collect 10¹⁸ protons-on-target in "dump mode" → further HNL searches.

Rainer Wanke

Lepton Photon 2022 (Manchester) Jan 11th, 2022

