New measurement of radiative decays at the NA62 experiment at CERN $% \left(\mathcal{L}_{\mathrm{CRN}}^{2}\right) =0.011$

Dmitry Madigozhin

Joint Institute for Nuclear Research, Dubna, Russia

madigo@cern.ch

on behalf of the NA62 Collaboration

30th International Symposium on Lepton Photon Interactions at High Energies

Radiative decays at NA62

$$R_{j} = rac{\mathcal{B}(Ke3\gamma^{j})}{\mathcal{B}(Ke3)} = rac{\mathcal{B}(K^{+}
ightarrow \pi^{0}e^{+}
u\gamma \mid E_{\gamma}^{j}, heta_{e,\gamma}^{j})}{\mathcal{B}(K^{+}
ightarrow \pi^{0}e^{+}
u(\gamma))}$$

	E_{γ} cut (K frame)	$\theta_{e,\gamma}$ cut (K frame)	$O(p^6) ChPT$	ISTRA+	ΟΚΑ
		,,	[EPJ C 50, 557]		
$R_1 (\times 10^2)$	$E_{\gamma} > 10~MeV$	$ heta_{e,\gamma} > 10^\circ$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_2 (\times 10^2)$	$E_{\gamma} >$ 30 MeV	$ heta_{e,\gamma} > 20^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
$R_3 (\times 10^2)$	$E_{\gamma} > 10 \; MeV$	$0.6 < \cos heta_{e,\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$
Most recent theoretical calculation [K brinlovich et al. PAN 74, 1214]; $P_{\rm c} = (0.56 \pm 0.02)\%$					

wost recent theoretical calculation [Knripiovich et al., PAN 74, 1214]: $R_2 = (0.50 \pm 0.02)\%$

 $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay: T-asymmetry

T-odd observable ξ (in the kaon rest frame):

$$\xi = rac{ec{p_{\gamma}} \cdot (ec{p_e} imes ec{p_{\pi}})}{m_{\mathcal{K}}^3}$$
; $A_{\xi} = rac{N_+ - N_-}{N_+ + N_-}$

Non-zero A_{ξ} values due to NLO (one-loop) electromagnetic corrections

•
$$|A_{\xi}^{SM \text{ and beyond}}| < 10^{-4}$$

• $A_{\xi}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$
• No measurements provided for R_1 and R_2

The NA62 experiment at CERN

- Main goal: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement; NA62 programme includes many other K^+ decays.
- Detector commissioning in 2015.
- Physics runs in 2016, 2017 and 2018.
- Measurement of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ from full 2016+2017+2018 data set recently published: [JHEP 06 (2021) 093].
- Data taking resumed in July 2021, approved up to CERN LS3(2025).

NA62 is located at CERN in the *North Area*, exploiting a 400 GeV/c proton beam extracted from the SPS accelerator.

NA62 detector [2017 JINST 12 P05025]

January 11, 2022 5 / 16

R_j measurement strategy

$$R_{j} = \frac{\mathcal{B}(Ke3\gamma^{j})}{\mathcal{B}(Ke3)} = \frac{N_{Ke3\gamma^{j}}^{obs} - N_{Ke3\gamma^{j}}^{bkg}}{N_{Ke3}^{obs} - N_{Ke3}^{bkg}} \cdot \frac{A_{Ke3}}{A_{Ke3\gamma^{j}}} \cdot \frac{\epsilon_{Ke3}^{trig}}{\epsilon_{Ke3\gamma^{j}}^{trig}}$$

- Background estimation performed using both data (accidentals) and MC (decays).
- Acceptances: evaluated by MC.
- Signal (Ke3γ) and normalization (Ke3) channels share most of the selection criteria (except for the radiative photon): approximate cancellation of many systematics effects.
- Trigger efficiencies: measured with data. Almost equal for signal and normalization (within per mill precision) since trigger reacts to the presence of the e^+ only.
- Only statistical uncertainty of $N_{Ke3\gamma^{j}}^{obs}$ and N_{Ke3}^{obs} is defined as statistical uncertainty for the R_{j} measurement, all the rest is considered as systematic.
- Full 2017 and 2018 data sets have been analyzed.

Ke3 γ selection criteria

- K^+ reconstructed in GTK and associated to KTAG, e^+ reconstructed in STRAW and associated to CHOD, RICH and LKr detectors;
- $\pi^0
 ightarrow \gamma\gamma$ identified selecting two energy clusters in LKr, applying kinematic limits on the photons pair invariant mass;
- ${\ensuremath{\, \circ }}$ Radiative γ identified selecting one more in-time and isolated energy cluster in LKr;
- e^+ PID (μ^+ and π^+ rejection) using RICH ring radius and LKr-STRAW E/p ratio;
- In-time extra activity in LKr, LAV, IRC and SAC not allowed, in order to reject $K^+ \rightarrow \pi^0 \pi^0 e^+ \nu$ (Ke4n) and to suppress accidental background;
- In-time signal in MUV3 not allowed for further rejection of μ^+ ;
- Anti-coincidence between the position of the radiative photon cluster in LKr; and the extrapolation of track at the LKr plane, to reject $K^+ \rightarrow \pi^0 e^+ \nu$ events with a photon emitted from the positron interaction with the detector material (bremsstrahlung);
- Dedicated kinematic conditions to reject $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ (K3 π^0) and $K^+ \rightarrow \pi^+ \pi^0$ (K2 π) backgrounds;
- Kinematic selection using the two missing mass observables:

$$m_{miss}^{2}(Ke3\gamma) = (P_{K} - P_{e} - P_{\pi^{0}} - P_{\gamma})^{2} = m^{2}(\nu)$$

$$m_{miss}^{2}(Ke3) = (P_{K} - P_{e} - P_{\pi^{0}})^{2} = m^{2}(\nu\gamma)$$

Normalization selected events (Ke3)

• 66*M* selected events

• Almost background free:
$$B/S \sim 10^{-4}$$

Main background source of Ke3 γ selection: accidentals

Accidental event: $K^+ \rightarrow \pi^0 e^+ \nu$ decay with a lost soft radiative γ (or K2 π with $\pi^+ \rightarrow e^+$ mis-ID) + additional 'good' LKr cluster imitating a radiative photon

- Dedicated cut in signal selection using $m_{miss}^2(Ke3)$ observable
- Background in signal region estimated with data from the out-of-time side-bands

Number of observed events (preliminary)

Selection	N ^{obs}	Statistical relative uncertainty
Ke3	$66.378 \cdot 10^{6}$	0.01%
$Ke3\gamma(R_1)$	$129.6 \cdot 10^{3}$	0.3%
$Ke3\gamma(R_2)$	$53.6 \cdot 10^{3}$	0.4%
$Ke3\gamma(R_3)$	$39.1 \cdot 10^3$	0.5%

These statistical uncertainties on R_i measurements improve the state of the art by a factor $\simeq 3$

Acceptances measurements (preliminary)

Selection	A [%]	Relative statistical uncertainty
Ke3	3.839 ± 0.002	0.06%
$Ke3\gamma(R_1)$	0.443 ± 0.001	0.2%
$Ke3\gamma(R_2)$	0.513 ± 0.002	0.4%
$Ke3\gamma(R_3)$	0.431 ± 0.002	0.4%

Acceptances are defined for the corresponding phase spaces of R_1, R_2, R_3 definitions.

Summary of signal selections backgrounds (preliminary)

Bkg source	R1	R2	R3
Accidentals	$(4.9\pm 0.2\pm 1.3)\cdot 10^2$	$(2.3\pm0.2\pm0.3)\cdot10^2$	$(1.1\pm 0.1\pm 0.5)\cdot 10^2$
$K^+ o \pi^0 \pi^0 e^+ u$	$(1.1 \pm 1.1) \cdot 10^2$	$(1.1 \pm 1.1) \cdot 10^2$	$(0.07\pm 0.07)\cdot 10^2$
$K^+ o \pi^+ \pi^0 \pi^0$	< 20	< 20	< 20
$K^+ ightarrow \pi^+ \pi^0 \gamma$	< 2	< 2	< 2
Total	$(5.9 \pm 1.7) \cdot 10^2$	$(3.4 \pm 1.1) \cdot 10^2$	$(1.1\pm 0.6)\cdot 10^2$
B/S	0.46%	0.64%	0.29%

• B/S < 1%

• The contribution of the uncertainty of the background estimation is small when propagated to the final R_j measurements (0.2% relative in the worst case)

Signal selected events (Ke 3γ - R_1)

• 130K selected events in R_1 (54K in R_2 , 39K in R_3)

• Background contamination: $B/S(R_1) \simeq 0.5\%$, $(B/S(R_2) \simeq 0.6\%$, $B/S(R_3) \simeq 0.3\%)$

NA62 preliminary R_i measurements

	$O(p^6) ChPT$	ISTRA+	OKA	NA62 preliminary
$R_1 \ (imes 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.005 \pm 0.010$
$R_2~(imes 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.599 \pm 0.003 \pm 0.005$
$R_3 (\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$

Uncertainty source	$\delta R_1/R_1$	$\delta R_2/R_2$	$\delta R_3/R_3$
Statistical	0.3%	0.5%	0.6%
Acceptances from MC	0.2%	0.4%	0.4%
Background estimation	0.1%	0.2%	0.1%
LKr response modeling	0.5%	0.6%	0.5%
Theoretical model	0.1%	0.5%	0.1%
Total systematic	0.6%	0.9%	0.6%
Total stat+syst	0.7%	1.0%	0.8%

- Achieved relative precision on R_i measurements is equal or better than 1%;
- State of the art improved by a factor between 2.0 and 3.6 in terms of relative precision;
- Relative discrepancy with theory of 6-7% in all three measurements;
- NA62 result for R₂ is half way between the two latest theoretical predictions [Kubis et al., EPJ C 50, 557] and [Khriplovich et al., PAN 74, 1214].

NA62 preliminary A_{ξ} measurements

	R_1 selection	R_2 selection	R_3 selection
A_{ξ}^{Data} ($ imes 10^2$)	0.2 ± 0.3	0.1 ± 0.4	-0.6 ± 0.5
A_{ξ}^{MCgene} (×10 ²)	-0.01 ± 0.01	0.00 ± 0.02	-0.01 ± 0.02
A_{ξ}^{MCreco} (×10 ²)	0.3 ± 0.2	0.4 ± 0.3	0.3 ± 0.5
$A_{\xi} (\times 10^2)$	$-0.1\pm0.3_{stat}\pm0.2_{MC}$	$-0.3\pm0.4_{stat}\pm0.3_{MC}$	$-0.9\pm0.5_{stat}\pm0.4_{MC}$

- R_3 T-asymmetry precision improved by a factor greater than 3: $A_\xi^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$
- First measurements ever performed for R_1 and R_2 T-asymmetry

Conclusions

- New preliminary results from the NA62 experiment on the $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay based on 2017 and 2018 data;
- Measurements of Ke3 γ branching fraction ratio (R_j) have been performed, showing 6-7% relative discrepancy with *ChPT* $O(p^6)$ calculations;
- Experimental relative precision of R_j measurements improved by a factor between 2.0 and 3.6, relative uncertainties $\leq 1\%$;
- T-asymmetry measurements have been performed: still compatible with zero, experimental sensitivity far from the theoretical expectations;
- First T-asymmetry measurements for R_1 and R_2 , improvement by a factor greater than 3 for R_3 .

SPARES

References

- 1 Kubis et al., Eur. Phys. J. C 50 (2007), pp. 557-571
- 2 Khriplovich et al., Phys. Atom. Nucl. 74 (2011), pp. 1214-1222
- 3 Braguta et al., Phys. Rev. D 65 (2002), p. 054038
- 4 Braguta et al., Phys. Rev. D 68 (2003), p. 094008
- 5 Muller et al., Eur. Phys. J. C 48 (2006), pp. 427-440
- 6 Akimenko et al. (ISTRA+ Collaboration), Phys. Atom. Nucl. 70 (2007), p. 702
- 7 Polyarush et al. (OKA Collaboration), Eur. Phys. J. C 81.2 (2021), p. 161
- 8 Gatti, Eur. Phys. J. C 45 (2006), pp. 417-420

Signal selected events (Ke3 γ - R_2)

- 54K selected events in R_2
- Background contamination: $B/S\simeq 0.6\%$

Signal selected events (Ke 3γ - R_3)

- 39K selected events in R_3
- Background contamination: $B/S \simeq 0.3\%$