Semileptonic decays in LHCb

Guy Wormser (IJCLab)
on behalf of the LHCb Collaboration

LP2021 Conference Manchester

Recent semileptonic results from LHCb

- First observation of the decay $B_S^0 \to K^- \mu^+ \nu_\mu$ and a measurement of $|V_{ub}|/|V_{cb}|$ • Phys. Rev. Lett. 126, 081804 (2021)
- Measurement of $|V_{cb}|$ with $B_s^0 \to D_s^{(*)-} \mu^+ \nu_\mu$ decays <u>Phys. Rev. D 101 (2020) 072004</u>
- Measurement of the shape of the $B_s^0 \to D_s^{*-} \mu^+ \nu_\mu$ differential decay rate <u>JHEP 2012 (2020) 144</u>
- Observation of the semileptonic decay $B^+ o p \bar{p} \mu^+ v_\mu$ JHEP 2003 (2020) 146
- Observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$ with $\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$ decay LHCb-PAPER-2021-044 arxiv:2201:03497
- Observation of a $\Lambda_{\rm b}$ $\Lambda_{\rm b}$ production asymmetry in proton-proton collisions at \sqrt{s} =7,8 TeV, JHEP 2110 (2021) 060
- Measurement of B_c^- production fraction and asymmetry at 7 and 13 TeV pp collisions, <u>Phys. Rev. D 100 (2019) 112006</u>

Why Lepton Flavour Universality tests with Λ_b^0 are interesting?

$$\mathcal{R}(\Lambda_c^+) \equiv \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})$$

- Lepton Flavour Universality violation hints in the meson sector $\mathcal{R}(D^*)$ - $\mathcal{R}(D)$: 3.4 σ away from SM in the latest 2021 HFLAV update
- With spin ½ spectator, the baryonic channel adds a very complementary test
- Similar precision on SM prediction with lattice QCD computations

$$\mathcal{R}(\Lambda_c^+)_{\text{SM}} = 0.324 \pm 0.004$$
 F. Bernlochner et al., Physical Review D 99 055008 (2019)

with input from Lattice QCD FF: W. Detmold, C. Lehner, S. Meinel, Physical Review D 92 034503 (2015)

- But different NP couplings: could help pin down NP source
- Unique to LHCb. Never searched for before!

Most recent update of $\mathcal{R}(D^*)$ - $\mathcal{R}(D)$ status

NP expectations for $\mathcal{R}(\Lambda_c^+)$ in various models

A. Datta et al., Journal of High Energy Physics 1708 (2017) 131

$\mathcal{R}(\Lambda_c^+)$ can be below
or well above SM,
when satisfying
$\mathcal{R}(D^*) ext{-}\mathcal{R}(D)$
constraints

	g_S only	g_P only	g_L only	g_R only	g_T only
	-0.4	0.3	-2.2	-0.044	0.4
$R(\Lambda_c)$	0.290 ± 0.009	0.342 ± 0.010	0.479 ± 0.014	0.344 ± 0.011	0.475 ± 0.037
$R_{\Lambda_c}^{Ratio}$	0.872 ± 0007	1.026 ± 0.001	1.44	1.033 ± 0.003	1.426 ± 0.100
	-1.5 - 0.3i	0.4-0.4i	0.15 - 0.3i	0.08 - 0.67i	0.2-0.2i
$R(\Lambda_c)$	0.384 ± 0.013	0.346 ± 0.011	0.470 ± 0.014	0.465 ± 0.014	0.404 ± 0.021
$R_{\Lambda_c}^{Ratio}$	1.154 ± 0.008	1.040 ± 0.002	1.412	1.397 ± 0.005	1.213 ± 0.050

NP predictions with all present constraints from the meson sector

Coupling	$R(\Lambda_c)_{max}$	$R_{\Lambda_c,max}^{Ratio}$	coupling value	$R(\Lambda_c)_{min}$	$R_{\Lambda_c,min}^{Ratio}$	coupling value
g_S only	0.405	1.217	0.363	0.314	0.942	-1.14
g_P only	0.354	1.062	0.658	0.337	1.014	0.168
g_L only	0.495	1.486	0.094 + 0.538i	0.340	1.022	-0.070 + 0.395i
g_R only	0.525	1.576	0.085 + 0.793i	0.336	1.009	-0.012
g_T only	0.526	1.581	0.428	0.338	1.015	-0.005

$\mathcal{R}(\Lambda_c^+)$ analysis workflow with $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$

- Tight Λ_c^+ PID selection in pK π mode. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_S^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

LHCb-PAPER-2021-044 arxiv:2201:03497

Tight Λ_c^+ selection

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_S^- and D^0 exclusive peaks to control double charm background
- Anti- D_S^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

« Prompt » background rejection

Prompt rejection $\sim 5 \times 10^3$ level after the 5σ inversion cut

Control of the suppression factor with the normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$

LHCb-PAPER-2021-044 arxiv:2201:03497

Before inverted topology cut

After inversion

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_S^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

Reconstruction of the kinematics

- Using the position of the three vertices, the direction of flight of the Λ_b^0 and of the τ particles can be reconstructed.
- The momenta of these 2 particles by solving two 2nd-degree equations
- τ pseudo decay time and q² can be measured with a 15% resolution

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_S^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

Distribution of the 3π mass after final selection

LHCb-PAPER-2021-044 arxiv:2201:03497

 $\mathsf{BR}(D_S^- \to 3\pi\mathsf{X})^{\sim} 30\mathsf{xBR}(D_S^- \to \pi\pi\pi)$

No candidates above the D_s^- mass : completely dominated by double charm background

The exclusive $\Lambda_c^+ D_s^-(X)$ control sample

LHCb-PAPER-2021-044 arxiv:2201:03497

Fit to the $\Lambda_h \rightarrow \Lambda^+_c \pi^- \pi^+ \pi^-$ mass distribution

Projection on q²

LHCb data

Total model

 $\Lambda_{\rm h}^0 \rightarrow \Lambda_{\rm c}^+ D_{\rm s}^-$

 $\Lambda_{\rm b}^{\scriptscriptstyle 0} \, o \, \varSigma_{\rm c}^{\scriptscriptstyle +} D_{\scriptscriptstyle \rm s}^{\scriptscriptstyle -}$

Combinatorial

 $\rightarrow \Lambda_{\rm c}(2593)^{+}D_{\rm s}^{-}$

 $\rightarrow \Lambda_{\rm c}(2625)^{+}D_{\rm s}^{-}$

 $q^2 (\text{GeV}^2/c^4)$

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

The anti- D_s^- BDT: 3π dynamics key to separate D_s^- from τ^- decays

 τ^- decays thru $a_1^+ \rightarrow \rho^0 \pi^+$: ρ^0 peak in both $\pi^+ \pi^-$ masses D_s^- decays thru $\eta, \eta', \phi, \omega$...

The three nice features of the 3-prong τ decay :

- Suppression of the prompt background
- Good kinematic reconstruction
- Powerful τ/D_s^- distinction

LHCb R(D*)
Phys. Rev. D97, 072013 (2018)

3D Fit results

- The fit is a 3D binned (6x6x6) maximum likelihood template fit to the data
- 3 variables :
 - τ decay time
 - q²
 - Anti- D_s^- BDT
- Fit results : $\chi^2/dof=1.3$

Signal yield =
$$349 \pm 40$$

$$\Lambda_{\rm c}^* \tau \nu = 35$$

$$N D_s^- = 2757 \pm 80$$

$$N D^+ = 443 \pm 55$$

$$N D^0 = 186 \pm 7$$

Combinatorial 679

Fit projections : τ decay time and BDT

LHCb-PAPER-2021-044 arxiv:2201:03497

Fit projection: q² Low BDT

LHCb-PAPER-2021-044 arxiv:2201:03497

High BDT(>0.66)

Observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$

- Increase of fit χ^2 with signal forced to 0 : 7.3 σ statistical only
- Increase of fit χ^2 with signal forced to 0 after inclusion of systematic uncertainty (dominated by template shapes): 6.1 σ
- We can claim observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$!

$\mathcal{R}(\Lambda_c^+)$ analysis workflow

- Tight Λ_c^+ PID selection. Λ_c^+ sideband template used in the signal fit to remove the background under the Λ_c^+ peak
- Combine with detached $\pi^-\pi^+\pi^-$ triplet forming τ^- candidates
- Prompt background rejection thanks to vertex topology
- Reconstruct decay kinematics
- D_s^- and D^0 exclusive peaks to control double charm background
- Anti- D_s^- to reject double charm background
- Normalisation channel : $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ (without $\Lambda_c^{*+} \pi^-$) [same final state and similar dynamics]

$\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$ normalisation peak

Comparison of the 3π mass distribution for $\Lambda_c^+3\pi$ and D*3 π events before and after $\Lambda_c^{*+}\pi$ events removal

Normalisation yield after Λ_c^{*+} subtraction: 8584 ± 102

LHCb-PAPER-2021-044 arxiv:2201:03497

Largest systematic: template shapes

Source	$\delta \mathcal{K}(\Lambda_c^+)/\mathcal{K}(\Lambda_c^+)[\%]$
Simulated sample size	3.8
Fit bias	3.9
Signal modeling	2.0
$\Lambda_c^{*+} \tau^- \overline{\nu}_{\tau}$	2.5
$D_s^- \to 3\pi X$ decay model	2.5
$\Lambda_b^0 \to \Lambda_c^+ D_s^- X$, $\Lambda_b^0 \to \Lambda_c^+ D^- X$, $\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 X$ background	4.7
Combinatorial background	0.5
Particle identification and trigger corrections	1.5
Data/simulation agreement for isolation and vertex	4.5
$D_s^+, D^-, \overline{D}^0$ templates shapes	13.0
Efficiency ratio	2.8
Normalization channel efficiency (modeling of $\Lambda_b^0 \to \Lambda_c^+ 3\pi$)	3.0
Total uncertainty	16.5

LHCb-PAPER-2021-044 arxiv:2201:03497

Physics results

$$\mathcal{K}(\Lambda_c^+) \equiv \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)$$

$$\mathcal{K}(\Lambda_c^+) = 2.46 \pm 0.27 \text{ (stat)} \pm 0.40 \text{ (syst)}$$

• Using
$$\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)_{\text{no }\Lambda_c^{*+}} = (0.614 \pm 0.094)\%$$
 [PDG2020], $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) = (1,50 \pm 0,16 \text{ (stat)} \pm 0,25 \text{ (sys)} \pm 0,23 \text{ (ext)}) \%$ (SM expectation=(1.8± 0.1)%

• Using $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \ \mu^- \overline{\nu}_\mu) =$ (6.2 ±1.4)% [PDG2020],

$$\mathcal{R}(\Lambda_c^+)$$
=0.242 ± 0.026 (stat) ± 0.040 (syst) ± 0.059 (ext) (SM expectation=0.324 ± 0.004)

F. Bernlochner et al., Physical Review D 99 055008 (2019) with input from W. Detmold, C. Lehner, S. Meinel, Physical Review D 92 034503 (2015)

Constraints on New Physics models (including all meson-based results)

Coupling	$R(\Lambda_c)_{max}$	$R_{\Lambda_c,max}^{Ratio}$	coupling value	$R(\Lambda_c)_{min}$	$R_{\Lambda_c,min}^{Ratio}$	coupling value
g_S only	0.405	1.217	0.363	0.314	0.942	-1.14
g_P only	0.354	1.062	0.658	0.337	1.014	0.168
g_L only	0.495	1.486	0.094 + 0.538i	0.340	1.022	-0.070 + 0.395i
g_R only	0.525	1.576	0.085 + 0.793i	0.336	1.009	-0.012
g_T only	0.526	1.581	0.428	0.338	1.015	-0.005

A. Datta et al., Journal of High Energy Physics 1708 (2017) 131

Our result excludes regions of the parameter space of effective theories with only one vector, axial-vector or tensor coupling

Semitauonic prospects in LHCb

- Many more semitauonic results expected soon using the muonic and hadronic τ decay channel :
 - $\mathcal{R}(D^*)$ using 2015-2016 data
 - D* polarization measurement
 - $\mathcal{R}(D^\circ)$ - $\mathcal{R}(D^{*+})$
 - $\mathcal{R}(\Lambda_c^+)$ using the full Run2 data
 - $\mathcal{R}(D^{+})$
- Work is also ongoing on $\mathcal{R}(D_s)$, $\mathcal{R}(J/\psi)$, full angular analysis

Conclusions

LHCb-PAPER-2021-044 arxiv:2201:03497

- The decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$ has been observed for the first time with a significance of 6.1 σ
 - $\mathcal{K}(\Lambda_c^+) = 2.46 \pm 0.27 \text{ (stat)} \pm 0.40 \text{ (syst)}$
 - $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) = (1,50 \pm 0,16 \text{ (stat)} \pm 0,25 \text{ (sys)} \pm 0,23 \text{ (ext)}) \%$
 - $\mathcal{R}(\Lambda_c^+)=0.242 \pm 0.026$ (stat) ± 0.040 (syst) ± 0.059 (ext)
- Everything compatible with SM ($^{\sim}1 \sigma$ below)
- A fraction of the parameter space of effective theories with only one vector, axial-vector or tensor couplings can be excluded

Backup slides

Regarding $\Lambda_c^+ \pi^+ \pi^- \pi^+$ mode: PDG2020

Γ(Λ_c⁺π⁺π⁻π⁻)/Γ_{total}

VALUE (units 10⁻³)

7.7±1.1 OUR FIT Error includes scale factor of 1.1.

14.9+3.8 ±1.2

1 AALTONEN 12A CDF
$$p\bar{p}$$
 at 1.96 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • • seen

90 BARI 91 SFM Λ_c⁺ → $pK^-π^+$

1 AALTONEN 12A reports [Γ(Λ_b⁰ → Λ_c⁺π⁺π⁻π⁻)/Γ_{total}] / [B(Λ_b⁰ → Λ_c⁺π⁻)] = 3.04 ± 0.33 + 0.70 / 0.55 which we multiply by our best value B(Λ_b⁰ → Λ_c⁺π⁻) = (4.9 ± 0.4) × 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Γ(Λ_c⁺π⁺π⁻π⁻)/Γ(Λ_c⁺π⁻)

VALUE

1.56±0.21 OUR FIT

1.43±0.16±0.13

AAIJ

11E LHCB pp at 7 TeV

For $\Lambda_c^+\pi^+\pi^-\pi^+$ data, the PDG error is 14%. (a bit better for some reason than the combination of the 8% of the absolute BR($\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-$) and the 13.5% ratio coming from the ratio.)

Subtracting $\Lambda_c^{*+}\pi^-$

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

for a total of (20.3±4) % of the full $\Lambda_c^+\pi^-\pi^+\pi^-$ yield. This corresponds to a total error of 14.8% .

Regarding $\Lambda_c^+ \mu^- \overline{\nu}_{\mu}$

```
\Gamma(\Lambda_c^+\ell^-\overline{\nu}_\ell)/\Gamma_{\text{total}}
                                                                                                                  Γ<sub>39</sub>/Γ
VALUE
                                                   DOCUMENT ID
                                                                                 TECN
                                                                                            COMMENT
0.062<sup>+0.014</sup><sub>-0.013</sub> OUR FIT
0.050^{+0.011}_{-0.008}^{+0.011}_{-0.012}^{+0.016}
                                                <sup>1</sup> ABDALLAH 04A DLPH e^+e^- \rightarrow Z^0
   <sup>1</sup>Derived from a combined likelihood and event rate fit to the distribution of the Isgur-
     Wise variable and using HQET. The slope of the form factor is measured to be \rho^2
     2.03 \pm 0.46^{+0.72}_{-1.00}
\Gamma(\Lambda_c^+\ell^-\overline{\nu}_\ell)/\Gamma(\Lambda_c^+\pi^-)
                                                                                                               \Gamma_{39}/\Gamma_{24}
                                                   DOCUMENT ID
                                                                                 TECN
                                                                                           COMMENT
12.7+3.1 OUR FIT
16.6\pm3.0^{+2.8}_{-3.6}
                                                                                           p\overline{p} at 1.96 TeV
                                                   AALTONEN
                                                                        09E CDF
```

- 22.6% for the semileptonic channel
- Combining with the $\Lambda_c^+\pi^-\pi^+\pi^-$ the crude number is 27%.
- It reduces to 24% by removing the 13% relative error mentioned in the PDG for their f_{Ab} fraction (8.4+1.1)%

Distribution of the difference m($\Lambda_c^+\pi^+\pi^-$)-m(Λ_c^+) in the $\Lambda_b^0\to\Lambda_c^+\pi^-\pi^+\pi^-$ mass peak

Distribution of the $K^+\pi^-\pi^+\pi^-$ mass for events with one extra kaon track at the 3π vertex

Results of the nominal fit

Parameter	Fit result	Constraint value
N_{sig}	$349 \pm 40 \ (11.8\%)$	
$f_{ au o 3\pi u}$		0.78
$f_{\Lambda_c^* au\overline{ u}_ au}$		0.1
$N_{D^0}^{same}$	80.2 ± 8.3	81.4 ± 7.4
$f_{D^0}^{v_1-v_2}$	1.3 ± 0.7	
$\widetilde{N_{D_s}}$	2755.9 ± 81	
f_{D_s}	0.49 ± 0.09	0.65 ± 0.08
$f_{D_{s0}^{ullet}}$	0.0 ± 0.012	0.28 ± 0.12
$f_{D_{s1}^{\prime}}$	0.41 ± 0.07	0.29 ± 0.12
$f_{\Lambda_c(2625)D_s^{(*)}}^{-s1}$	0.19 ± 0.06	0.22 ± 0.09
$f_{\Sigma_c\pi D_s^{(*)}}$	0.0 ± 0.02	0.22 ± 0.05
N_{D^+}	443 ± 54	
N_{combi}		40.3
$N_{\perp +}^{bkg}$		639
$N_{\Lambda_c^+}^{bkg} \chi^2$	256	
reduced χ^2 ($ndof = 216$)	1.30	

Baryon production from B mesons

- Thé only way to get $\Lambda_c\,3\pi\,$ with the inverted vertex topology is the production of two charmed baryons
- Two such decays exist
 - Two-body mode B° $\rightarrow \Lambda_c \Xi c$ BR =(0,12+_ 0.08)% similar to signal mode
 - Three-body mode B° $\to \Lambda_c \Lambda_c K$ ° (can come partially from $\Lambda_c \Xi_c$ (2930) BR= (0.04+_0.009)%

The decay $\Xi_c \to \Xi \, 3\pi$ (BR=1.7%) or $\Lambda_c \to \Lambda \, 3\pi$ (BR=5%) is then needed (The 3 pions have to come from the same vertex)

- Small but $f_d=4*f_\Lambda$ Important to note that mass(3π) <1.1 GeV
- B⁺ contribution suppressed by isolation requirements

