

Prospects for observing the charged IDM scalars at high energy CLIC

On behalf of the CLICdp Collaboration

Compact Linear Collider

- Novel two-beam acceleration technique
- Normal conducting technology
- High 100 MeV/m gradient, 12 GHz accelerating structures
- ±80% electron beam polarisation
- Implementation in <u>3 stages</u>

Compact Linear Collider

380 GeV stage:

- presicion Higgs measurements
- presicion top measurements
- top threshold scan

1.5 TeV, 3 TeV stages:

- **Higgs** self-coupling
- top Yukawa coupling
- more precision measurements: indirect **BSM** constraints

+ direct new physics searches at high energies

Dedicated **detector concept** optimised for **particle-flow** approach

Inert Doublet Model

$$\phi_{SM} = \begin{pmatrix} \phi^{+} \\ \frac{1}{\sqrt{2}}(v+h+i\xi) \end{pmatrix} \qquad \phi_{D} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}}(H+iA) \end{pmatrix}$$
Wew scalars: H[±], H, A

- Additional scalars do not couple to fermions on tree level (Z₂ symmetry)
- The lightest of new particles is stable → DM candidate
- 5 free parameters in the model with existing constraints

Inert Doublet Model

Considered 23 high-mass benchmark points from JHEP 1812 (2018) 081, arXiv:1809.07712 for two production scenarios:

Mass difference affects virtuality of W boson!

Strategy

IDM scalar production previously studied in leptonic channel (JHEP07 (2019) 053)

Discovery reach **limited** up to scalar masses ~ 250 GeV and ~ 500 GeV at 1.5 TeV and 3 TeV by production cross section

Strategy

Order of magnitude higher cross section expected for **semi-leptonic** channel

Expected **signature** of the final state: **One lepton:** e^{\pm} or μ^{\pm} and a **pair of jets**

cut-based preselection
+
multivariate analysis (BDTs)

Strategy

Order of magnitude higher cross section expected for **semi-leptonic** channel

Expected **signature** of the final state: **One lepton:** e^{\pm} or μ^{\pm} and a **pair of jets**

cut-based preselection + multivariate analysis (BDTs)

- Use CLIC beam spectra for 1.5 TeV (2000 fb⁻¹) and 3 TeV (4000 fb⁻¹)
- Generate samples with Whizard 2.7.0
- Use <u>Geant4</u> CLICdet model to simulate detector response for <u>5 scenarios</u>

Extend to
all 23 benchmarks
using fast simulation

Scenarios with on-shell vs. off-shell W^{+/-} (3 TeV)

Huge difference between scenarios with large and small $m_{H^{\pm}}-m_{H}$

5 scenarios used in full simulation study selected to cover wide range of mass splittings

Full simulation results

Note: MVA selection optimised for particular scenario!

Now extend to more scenarios using fast simulation and the same analysis methods!

Overlay background

LCD-Note-2011-006

CLIC: $44 \, \mu \mathrm{m}$

ILC: $300 \, \mu \mathrm{m}$

CLIC: 0.5 ns, 0.15 m

ILC: 369 ns, 111 m

Huge beam-induced backgrounds at CLIC

 $\gamma\gamma \to had$. most important (physics, performance)

Mitigation using timing cuts

Timing cuts not existing in DELPHES CLICdet cards!

→ included in approximate way with generator-level cuts

Influence on the reconstruction if W is virtual

$yy \rightarrow had.$ influence

- In **HP17 scenario** W^{+/-} is far off-shell
- Delphes with overlay performs much better

$yy \rightarrow had.$ influence

Selection **optimised** to particular scenario

$yy \rightarrow had.$ influence

- Delphes with overlay much closer to the full simulation
- Scenarios with low mass difference are most influenced by overlay

Results

- Two BDTs trained separately: for all scenarios with off-shell $W^{+/-}$ and for all scenarios with on-shell $W^{+/-}$
- Most benchmarks **above** 5σ discovery threshold

Summary

- Prospects for **discovery of charged IDM scalar** pair-production at high energy CLIC stages studied with **full** and **fast simulation**
- Impact of the $\gamma\gamma\to had$. **overlay events** crucial for the analysis
- A method to include this background in <u>CLICdet model</u> for Delphes was developed
- Charged IDM scalars with masses of up to 1 TeV can be discovered at CLIC

Thank you!

BACKUP

Timing cuts

In full simulation we have BXs from 10 ns after the physical event

Additional timing cuts on PFOs to reduce $\gamma\gamma \to had$. backg.

Example: Accept tracks with $p_T < 1 \text{ GeV}$ with t < 2 ns

Approximate timing cuts

Additional timing cuts on PFOs to reduce $\gamma \gamma \to had$. backg.

Example: Accept tracks with $\underline{p}_T < 1 \text{ GeV}$ with $\underline{t} < 2 \text{ ns}$

- 1. Take gen-level $\gamma\gamma\to \mathrm{had}$. events in batches of N
- 2. Accept specific particles with a **probability** t/10 ns, where a timing cut t corresponds to number n of BXs
- \rightarrow e.g. for <u>t < 2 ns</u> one can accept <u>n=2</u> out of N=10
- 3. Overlay selected events on physical sample