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Machine Learning for High Energy Physics
● Classical Machine learning algorithms commonly used in High 

Energy Physics data analysis
○ Boosted Decision Tree (BDT): an algorithm that incrementally builds 

an ensemble of decision trees and combines all the decision trees to 
form a strong classifier. 

○ Support Vector Machine (SVM): it maps the input vectors X into a 
high-dimensional feature space Z through some nonlinear mapping, 
chosen a priori. In this space, an optimal separating hyperplane is 
constructed to separate signal from background. 

○ Neural Network (NN): a computing system made up of a number of 
simple, highly interconnected processing elements, which process 
information by their response to external inputs. 
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Our program with Quantum Machine Learning

Our present program is to employ the following 3 
quantum machine learning methods
     Method 1. Variational Quantum Classifier Method

Method 2. Quantum Support Vector Machine Kernel Method
Method 3. Quantum Neural Network Method 

to LHC High Energy Physics analysis, for example ttH (H → 𝜸𝜸) 
and H→𝞵𝞵 (two LHC flagship analyses).

4

Our Goal:
     To perform LHC High Energy Physics analysis with 
Quantum Machine Learning, to explore and to demonstrate 
that the potential of quantum computers can be a new 
computational paradigm for big data analysis in HEP, as a 
proof of principle 
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ttH (H → 𝜸𝜸) analysis at the LHC 
The observation of ttH production (Higgs boson production in association with a top 
quark pair) by ATLAS and CMS at the LHC directly confirmed the interaction between 
the Higgs boson and the top quark, which is the heaviest known fundamental particle

5

● Using Boosted Decision Tree (BDT, a classical machine learning 
technique) with XGBoost package, the ATLAS Collaboration 
observes the ttH (H→γγ) process  

● Our study performs the event classification of the ttH (H→γγ) 
analysis (hadronic channel) with delphes simulation samples 
and quantum machine learning

(Top)

(((Anti-top)

(Higgs)

Phys. Lett. B 784 (2018) 173 M𝜸𝜸 [GeV]

https://www.sciencedirect.com/science/article/pii/S0370269318305732?via%3Dihub
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H → 𝞵𝞵 analysis at the LHC 
Although the coupling between the Higgs boson and 3rd-generation fermions has been 
observed, currently the coupling between the Higgs boson and 2nd-generation fermions 
is under intensive investigation. H→𝞵𝞵 is the most promising process to observe such a 
coupling by ATLAS and CMS at the LHC
ATLAS: 2.0σ, Phys. Lett. B 812, 135980 (2021)
CMS: 3.0σ, JHEP 01 148 (2021)
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● Using Boosted Decision Tree (BDT, a classical machine 
learning technique) with XGBoost package, the ATLAS 
Collaboration searches for the H→𝞵𝞵 decay  

● Our study performs the event classification of the H→𝞵𝞵 
analysis (VBF channel) with delphes simulation samples and 
quantum machine learning

Mμμ [GeV]Phys. Lett. B 812 (2021) 135980

https://www.sciencedirect.com/science/article/pii/S0370269320307838?via%3Dihub


Method 1

Employing Variational Quantum Classifier 
for ttH (H → 𝜸𝜸) and H → 𝞵𝞵 analyses
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Method 1: Variational Quantum Classifier (VQC) 

8

● In 2018, a Variational Quantum Classifier method 
was introduced by IBM, published in Nature 567 
(2019) 209. 

● The Variational Quantum Classifier method can be 
summarized in four steps.
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Method 1: Variational Quantum Classifier (VQC) 
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● 1. Apply feature map circuit UΦ(𝑥)⃗ 
to encode input data 𝑥 ⃗into 
quantum state |Φ(𝑥)⃗⟩

● 2. Apply short-depth quantum 
variational circuit W(θ) which is 
parameterized by gate angles θ

● 3. Measure the qubit state in the 
standard basis (standard basis: 
|0⟩, |1⟩ for 1 qubit; |00⟩, |01⟩, |10⟩, 
|11⟩ for 2 qubits; ...)

● 4. Assign the label (“signal” or 
“background”) to the event 
through the action of a diagonal 
operator f in the standard basis

● We have two independent sets of 
events: one for training and one for 
testing

● During the training phase, a set of 
events are used to train the circuit W(θ) 
to reproduce correct classification

● Using the optimized W(θ), the testing 
events are used for evaluation 
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● Definitions
○ ROC (Receiver Operating Characteristic) Curve: a graph 

showing background rejection vs signal efficiency.
○ AUC: Area Under the ROC Curve, for quantifying 

discrimitation power of machine learning algorithms 
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Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis

ROC curves and 
AUC are standard 
metrics for 
machine learning 
applications
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For 10 qubits, using ttH analysis dataset (100 
events) and H → 𝞵𝞵 analysis dataset (100 
events), Variational Quantum Classifier on IBM 
simulator (red) performs similarly with classical 
BDT (green) and classical SVM (blue).   

AUC 
(ttH)

AUC 
(H → 𝞵𝞵)

VQC 0.81 0.83

BDT 0.83 0.80

SVM 0.83 0.82

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● For 10 qubits, using ttH analysis dataset (100 events) and H → 𝞵𝞵 
analysis dataset (100 events), the result of Variational Quantum Classifier 
from IBM Quantum Hardware and result from Quantum Simulator are in 
good agreement. 

● The hardware running time for 100 events is 200 hours

IBM Hardware

hardware AUC = 0.82, simulator AUC = 0.83 hardware AUC = 0.81, simulator AUC = 0.83

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis

IBM Hardware



Method 2
 
Employing Quantum Support Vector Machine 
(QSVM) Kernel method
for ttH (H → 𝜸𝜸) analysis
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Method 2: Quantum SVM Kernel method
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● Quantum SVM Kernel method (introduced by IBM, published in 
Nature 567 (2019) 209): 

○ map classical data 𝑥⃗  to a quantum state |Φ(𝑥)⃗⟩ using a Quantum 
Feature Map function; 

○ calculate the similarity between any two data events (“kernel entry”) 
as 𝐾(𝑥⃗

1
,𝑥⃗

2
)=|⟨Φ(𝑥⃗

1
)|Φ(𝑥⃗

2
)⟩|² using a quantum computer; 

○ then using the kernel entries to find an optimal separating hyperplane 
that separates signal from background. 

map classical data

     𝑥1⃗→|Φ(𝑥1⃗)⟩ 
     𝑥2⃗→|Φ(𝑥2⃗)⟩
     𝑥3⃗→|Φ(𝑥3⃗)⟩
     ...

calculate kernel entries

𝐾(𝑥⃗1,𝑥2⃗)=|⟨Φ(𝑥1⃗)|Φ(𝑥⃗2)⟩|²

𝐾(𝑥⃗1,𝑥3⃗)=|⟨Φ(𝑥1⃗)|Φ(𝑥⃗3)⟩|²

𝐾(𝑥⃗2,𝑥3⃗)=|⟨Φ(𝑥2⃗)|Φ(𝑥3⃗)⟩|²

 ...

find separating hyperplane

𝑥⃗1

 𝑥⃗2

 𝑥⃗3
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● For 15 qubits, using ttH analysis dataset (20000 events), QSVM 
Kernel on simulator (red) achieves similar performances with 
classical SVM (blue) and classical BDT (green).   

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis 
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● For 15 qubits, using ttH analysis dataset (20000 events), Google 
qsim simulator (red), IBM statevector simulator (blue), and 
Amazon local simulator (green) provide identical performances 
for QSVM Kernel method

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis 
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Method 2: Employing QSVM Kernel with IBM hardware
(ibmq_paris, a 27-qubit machine) for ttH (H → 𝜸𝜸) analysis

● Using ttH analysis dataset (100 events), the QSVM Kernel results on 
the IBM Quantum Hardware (15 qubits) are promising and 
approaching the QSVM Kernel results on Quantum Simulator (the 
difference is likely due to effect of hardware noise)

● The average hardware running time for 100 events is approximately 
11 hours per run compared with 200 hours for 100 events in method 1.

IBM Hardware
hardware AUC = 0.777 

simulator AUC = 0.831

IBM Hardware



Method 3 

Employing Quantum Neural Network 
for ttH (H → 𝜸𝜸) analysis

18
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Method 3: Quantum Neural Network (QNN) 

19

● Quantum neural networks (QNNs): combining neural 
network algorithms and quantum computing 

○ Perform the computational intensive part of a neural network 
algorithm on a quantum computer with the aim of better efficiency 
and performance

● Many QNN  models have been recently studied in the field 
of quantum machine learning,  for example, using Google 
Tensorflow quantum library and IBM Qiskit library 
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We have been exploring a hybrid QNN of three layers:
○ Classical layer 1: transform input data so 

that its number of outputs matches 
number of qubits (PCA is no longer 
necessary)

○ Quantum layer (the core part): encode 
classical data into a quantum state, apply 
variational circuit containing trainable 
parameters, and measure the quantum 
state

○ Classical layer 2: convert the 
measurement of qubits to classification 
labels

Three layers are trained together to maximize the overall 
performance

Method 3: Hybrid Quantum Neural Network (QNN) 
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● Using the ttH analysis dataset with 0.6 million Delphes events and 15 
qubits, QNN on Google simulator (red) now performs similarly with 
classical Deep Neural Network (DNN) (blue) and classical BDT (green).

● The optimization of this QNN is still under development (e.g. more 
qubits), and we hope to achieve quantum advantage with large datasets.

Method 3: Employing QNN with Google simulator 
for ttH (H → 𝜸𝜸) analysis

QNN AUC: 0.9349

DNN AUC: 0.9361

BDT AUC: 0.9365

0.6 million events 
15 qubits
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● 100 events, 10 
qubits, 1 run 

● The performance with quantum hardware is close to 
the performance with no-noise simulation.

● Hardware running time for 100 events: 384 hours

Method 3: Employing QNN with IBM Q hardware (10 
qubits) for ttH (H → 𝜸𝜸) analysis

AUC (100 events)

Hardware 0.816

Simulator 0.816

IBM Hardware
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● We have employed 3 methods of Quantum Machine Learning

● Method 1: VQC-Variational Quantum Classifier 
(J. Phys. G: Nucl. Part. Phys 48, 125003, 2021)

● Method 2: QSVM-Quantum Support Vector Machine Kernel 
method (Phys. Rev. Research 3, 033221, 2021)

● Method 3: QNN-Quantum Neural Network (in progress)

● We have applied the three methods to two LHC HEP flagship 
analyses (ttH (H → 𝜸𝜸) and H → 𝞵𝞵) with Delphes simulation 
events. 

23

Summary (part 1)
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● Our results (on both simulators and hardware) demonstrate 
quantum machine learning on the gate-model* quantum 
computers has the ability to differentiate signal and background 
in realistic physics datasets

● Future developments: 
● We will investigate further and hopefully will see soon 

quantum machine learning outperforms classical machine 
learning, in particular, when more qubits are utilized

● Furthermore, future quantum computers might offer speed 
ups in quantum machine learning which could be critical for 
the HEP community

24

Summary (part 2)

* gate-based: computing is achieved by a sequence of quantum gates, as 
opposed to D-wave quantum annealers
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● Difficulties at present:
● Only 100 events are used in hardware jobs

■ Limited access time
● Only 10-15 qubits are used in hardware jobs

■ So far circuit length and number of CNOT gates are limited 
in our present study. 

● To use Quantum Computer Hardware for Machine Learning in 
future High-Luminosity LHC physics analyses, we need to extend 
our studies to larger event sample sizes and more qubits

● As of today, the maximal number of hardware qubits that I know 
of: 127 (IBM) and 54 (Google)

● To demonstrate that future Quantum Computers offer speed up 
in Quantum Machine Learning 

25

Challenges ahead
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● I am confident that, in the near future, 
the quantum machine learning methods can 
demonstrate, in quantum simulation, the quantum 
advantage with a larger number of qubits (e.g. greater 
than 30 qubits). 
This is in the context of application to High Energy 
Physics data analysis. 

26

OPPORTUNITIES
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From the roadmap presented by IBM and Google, it is expected that 
quantum hardware in the future will reduce noise and achieve a 
performance close to noiseless quantum simulators. In addition, 
they are working hard to speed up the quantum hardware running 
time.
● Specifically, industry roadmaps of quantum computer hardware 

project an exponential growth in the number of qubits, and that 
high-fidelity quantum computers will be available within the next 
10 years. 

27

OPPORTUNITIES
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From their roadmaps:
● IBM expects more than a thousand qubits (superconducting 

qubits) by 2023 and millions qubits soon after. 
● IonQ expects to have quantum computers with more than one 

thousand algorithmic qubits (trapped Ion qubits) available with 
error correction by 2028. 

● Google plans to build the error corrected quantum computers 
with more than one million qubits (superconducting qubits) by 
2029. 

● These roadmaps are evolving rapidly and the promised progress 
is impressive. With the large investments in quantum computing 
and fierce international competitions in technology, this 
expected opportunities are realistic.

28

OPPORTUNITIES
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● “In conclusion, advanced quantum computers with large 
number of qubits, reduced noise and improved running time 
may outperform classical machine learning in both 
classification power and in speed. QML may well be a new 
computational paradigm for big data analyses in HEP. For this 
reason, the HEP community should stay aware of what is 
happening in quantum technologies – improvements in the 
hardware, software ecosystem and algorithms — to bring a 
quantum advantage to the HEP data challenge. Conversely, 
the development of solutions for unique HEP data challenges 
could also lead to contributions to the development of 
quantum technologies.”

The above quotation from Sau Lan Wu and Shinjae Yoo is 
published in “Challenges and opportunities in quantum machine 
learning for high-energy physics”: March 2022 issue of Nature 
Reviews Physics volume 4, issue 3 (2022).
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OPPORTUNITIES
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We are working to exploit unsupervised machine 
learning for Anomaly Detection using quantum 
computers to search for new physics.

New Physics can be probed in the form of anomaly 
detection searches using AutoEncoder algorithm for 
example.
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New Project


