Detector Challenges of the Strong-field
QED Experiment LUXE at the European
XFEL
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Strong-Field Quantum Electro-Dynamics at LUXE Interactions
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A screen of scintillating material is used in this region in
conjunction with a segmented Cherenkov detector

The Gamma Spectrometer uses a thin Tungsten target to convert a proportion
(~1%) of the gamma beam to e" e* pairs, and using a Bethe-Heitler deconvolution
algorithm and the summed energy of the e e* pair, the gamma beam is
reconstructed by absolute energy distribution

» The energy profile of the e, e* are reconstructed with another Scint. Screen
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The high flux gives high light levels, allowing remote optical
cameras to detect signal at high position resolution
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Further Reading:  Conceptual Design Report for the LUXE Experiment, H. Abramowicz et al., Eur. Phys. J. Spec. Top. (2021) https://arxiv.org/abs/2102.02032v2;
LUXE-NPOD: new physics searches with an optical dump at LUXE, Z. Bai, https://arxiv.org/abs/2107.13554;
The DESY-Il Testbeam Facility: Ralf Diener et el., https://arxiv.org/abs/1807.09328;
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