CMS Cathode Strip Chambers

Upgrades for the High Luminosity LHC

Johan Sebastian Bonilla Castro
Pronouns: They/Them
On behalf of the CMS Collaboration
11 January 2022

30th International Symposium of Lepton Photon Interactions at High Energies
Outline

- CSC@CMS: The What and The How
- HL-LHC: Motivations and Plans
- Upgrades Completed During LS2
- Gearing Up for Run 3
- Outlook on Future Upgrades
CMS at the LHC

- LHC delivers proton-proton collisions at $\sqrt{s} = 13\ TeV$
CMS at the LHC

- LHC delivers proton-proton collisions at $\sqrt{s} = 13$ TeV
CMS at the LHC

- LHC delivers proton-proton collisions at $\sqrt{s} = 13\ TeV$
- CMS is one of four large experiments using LHC collisions
- Ending Long Shutdown 2, Preparing Run 3 (2022 - 2024), High-Luminosity LHC (2025 - ~2040)
CMS at the LHC

- LHC delivers proton-proton collisions at $\sqrt{s} = 13$ TeV
- CMS is one of four large experiments using LHC collisions
- Ending Long Shutdown 2, Preparing Run 3 (2022 - 2024), High-Luminosity LHC (2025 - ~2040)
HL-LHC Timeline at a Glance
HL-LHC Timeline at a Glace

Run 1
- 7 TeV
- 8 TeV
- splice consolidation
- button collimators
- R2E project
- 75% nominal Lumi
- 30 fb⁻¹

Run 2
- 13 TeV
- EYETS
- cryomagnet interaction regions
- experiment beam pipes
- nominal Lumi
- 190 fb⁻¹

Run 3
- 13 - 14 TeV
- LS2
- Diode Consolodation
- LIU installation
- 11 T dipole coll.
- Civil Eng. P1-P5
- 2 x nominal Lumi
- ALICE + LHCb
- upgrade
- radiation damage
- 2 x nominal Lumi
- integrated luminosity
- 3000 fb⁻¹
- 4000 (ultimate)

Run 4 - 5...
- 14 TeV
- LS3
- HL-LHC installation
- 5 to 7.5 x nominal Lumi

H = Jul 2012
HL-LHC Timeline at a Glance

Run 1
- 7 TeV
- 8 TeV
- Splice consolidation button collimators R2E project
- 2011-2012
- 75% nominal Lumi
- 30 fb⁻¹

Run 2
- 13 TeV
- EYETS
- 2013-2014
- 2 x nominal Lumi
- 190 fb⁻¹

Run 3
- 13 - 14 TeV
- LS2
- Diallel Consolidation LIU installation
- 11 T dipole coll. Civil Eng. P1-P5
- 2019-2020
- ATLAS - CMS upgrade phase 1
- ALICE - LHCb upgrade
- 2021-2022

Run 4 - 5...
- HL-LHC
- 14 TeV
- HL-LHC installation
- 2025-2026
- ATLAS - CMS HL upgrade
- 2027-2040

Integrated luminosity
- 3000 fb⁻¹
- 4000 (ultimate)

Notes:
- H = Jul 2012
- ➥ = Jan 2022

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC
HL-LHC Timeline at a Glance

- **Run 1** (2011-2012)
 - **LS1**: splice consolidation button collimators, R2E project
 - **7 TeV**
 - **H**
 - 75% nominal Lumi
 - 30 fb⁻¹

- **Run 2** (2013-2018)
 - **13 TeV**
 - **EYETS**
 - Experiment beam pipes
 - 2 x nominal Lumi
 - 190 fb⁻¹

- **Run 3** (2019-2024)
 - **LS2**: Dipoles Consolidation, LIU Installation
 - 11 T dipole coll., Civil Eng. P1.P5
 - 2 x nominal Lumi
 - ATLAS - CMS
 - ALICE - LHCb upgrade
 - 350 fb⁻¹

- **HL-LHC**
 - **Run 4 - 5**
 - **LS3**: HL-LHC installation
 - **14 TeV**
 - 5 to 7.5 x nominal Lumi
 - ATLAS - CMS
 - HL upgrade
 - Radiation damage
 - Integrated luminosity
 - 3000 fb⁻¹
 - 4000 (ultimate)

Annotations
- **H** = Jul 2012
- **★** = Jan 2022

Legend
- **LP2021 — Johan S Bonilla — UCDavis, CMS, CSC**
The Compact Muon Solenoid

CMS DETECTOR
- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m

Magnetic field: 3.8 T

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Niobium titanium coil carrying ~18,000 A
- Pixel (100x150 µm²) ~1.9 m³ ~124M channels
- Microstrips (80–180 µm) ~200 m³ ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FRESHOWER
- Silicon strips ~16 m³ ~137,000 channels

FORWARD CALORIMETER
- Steel + Quartz fibres ~2,000 Channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
- Brass + Plastic scintillator ~7,000 channels

J. Phys.: Conf. Ser. 513 022032
The Compact Muon Solenoid

CMS DETECTOR
Total weight: 14,000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m

STEEL RETURN YOKE
12,500 tonnes

SILICON TRACKERS
Pixel (100x150 μm²) ~1.9 m² ~124M channels
Microstrips (~80–180 μm) ~200 m² ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

FRESHOWER
Silicon strips ~16 m² ~137,000 channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

Magnetic field: 3.8 T

Total weight: 14,000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

FRESHOWER
Silicon strips ~16 m² ~137,000 channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
~76,000 scintillating PbWO₄ crystals

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

SILICON TRACKERS
Pixel (100x150 μm²) ~1.9 m² ~124M channels
Microstrips (~80–180 μm) ~200 m² ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

CMS DETECTOR
Total weight: 14,000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m

Magnetic field: 3.8 T

Total weight: 14,000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

FRESHOWER
Silicon strips ~16 m² ~137,000 channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
~76,000 scintillating PbWO₄ crystals

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

SILICON TRACKERS
Pixel (100x150 μm²) ~1.9 m² ~124M channels
Microstrips (~80–180 μm) ~200 m² ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

CMS DETECTOR
Total weight: 14,000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m

Magnetic field: 3.8 T

Total weight: 14,000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

FRESHOWER
Silicon strips ~16 m² ~137,000 channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
~76,000 scintillating PbWO₄ crystals

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels
The Compact Muon Solenoid

- High resolution silicon tracking in $|\eta| < 2.4$

CMS DETECTOR
- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Pixel (100x150 μm^2) ~1.9 m2 ~124M channels
- Microstrips (80–180 μm) ~200 m2 ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
- Steel + Quartz fibres ~2,000 Channels

HADRON CALORIMETER (HCAL)
- Brass + Plastic scintillator ~7,000 channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO$_4$ crystals

FRESHOWER
- Silicon strips ~16 m2 ~137,000 channels

The Compact Muon Solenoid

- High resolution silicon tracking in $|\eta| < 2.4$
The Compact Muon Solenoid

- High resolution silicon tracking in $|\eta| < 2.4$
- PbWO$_4$ EM Calorimetry
The Compact Muon Solenoid

- High resolution silicon tracking in $|\eta| < 2.4$
- PbWO$_4$ EM Calorimetry
- Brass Hadron Calorimeter — Provides excellent energy resolution for strongly-coupled parton showers
The Compact Muon Solenoid

- High resolution silicon tracking in $|\eta| < 2.4$
- PbWO$_4$ EM Calorimetry
- Brass Hadron Calorimeter
 - Provides excellent energy resolution for strongly-coupled parton showers
- Excellent, Robust Muon System
 - Superconducting solenoid creates 3.8T magnetic field in tracker and calorimeters, 2T is steel return yoke
The Compact Muon Solenoid

- High resolution silicon tracking in $|\eta| < 2.4$
- PbWO$_4$ EM Calorimetry
- Brass Hadron Calorimeter
 - Provides excellent energy resolution for strongly-coupled parton showers
- Excellent, Robust Muon System
 - Superconducting solenoid creates 3.8T magnetic field in tracker and calorimeters, 2T is steel return yoke
- Cost: ~500 MCHF + ~200 MCHF (Upgrades)
What Are Cathode Strip Chambers (CSCs)?
What Are Cathode Strip Chambers (CSCs)?

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)
What Are Cathode Strip Chambers (CSCs)?

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)
What Are Cathode Strip Chambers (CSCs)?

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)

- CSCs are 6-layers of wires (anodes) and strips (cathodes) in Ar/CO$_2$/CF$_4$ gas mixture
 - Traversing muons ionize gas at HV
 - Avalanche signal read by anode and cathode electronics
What Are Cathode Strip Chambers (CSCs)?

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)

- CSCs are 6-layers of wires (anodes) and strips (cathodes) in Ar/CO₂/CF₄ gas mixture
 - Traversing muons ionize gas at HV
 - Avalanche signal read by anode and cathode electronics

- CSCs measure 4D position, |η| ∈ [0.9, 2.4]
 - Work great in intense, non-uniform magnetic fields
What Are Cathode Strip Chambers (CSCs)?

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)

- CSCs are 6-layers of wires (anodes) and strips (cathodes) in Ar/CO$_2$/CF$_4$ gas mixture
 - Traversing muons ionize gas at HV
 - Avalanche signal read by anode and cathode electronics

- CSCs measure 4D position, $|\eta| \in [0.9,2.4]$
 - Work great in intense, non-uniform magnetic fields

$\sigma_\phi \sim 50 - 150\mu m$
What Are Cathode Strip Chambers (CSCs)?

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)

- CSCs are 6-layers of wires (anodes) and strips (cathodes) in Ar/CO₂/CF₄ gas mixture
 - Traversing muons ionize gas at HV
 - Avalanche signal read by anode and cathode electronics

- CSCs measure 4D position, |η| ∈ [0.9,2.4]
 - Work great in intense, non-uniform magnetic fields

\[\sigma_\eta \sim 50 - 150 \mu \text{m} \quad \sigma_\phi \sim 2.1 \text{ns} \]
Why Upgrade CSCs for HL-LHC (Runs 4+)?
Why Upgrade CSCs for HL-LHC (Runs 4+)?

- LHC Upgrade for Run 3
 - Collision energy increase $\sqrt{s} = 13 \rightarrow 13.6 \text{ TeV}$
 - Luminosity approx. 2x nominal, $2 \times 10^{34} \text{s}^{-1} \text{cm}^{-2}$
 - **Detectors should handle Run 3 easily**
Why Upgrade CSCs for HL-LHC (Runs 4+)?

- **LHC Upgrade for Run 3**
 - Collision energy increase $\sqrt{s} = 13 \rightarrow 13.6 \text{ TeV}$
 - Luminosity approx. 2x nominal, $2 \times 10^{34} \text{s}^{-1} \text{cm}^{-2}$
 - **Detectors should handle Run 3 easily**

- **LHC Upgrade for HL-LHC**
 - Full design energy $\sqrt{s} = 14 \text{ TeV}$
 - Luminosity to reach 5-7.5x LHC nominal
 - Expected rate: 200 collisions/crossing @ 40 MHz
 - **Higher detector occupancy**
 - **Need faster triggers+DAQ**

<table>
<thead>
<tr>
<th></th>
<th>HL-LHC needs</th>
<th>CMS 2017</th>
<th>CMS upgraded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1 trigger accept rate (kHz)</td>
<td>500</td>
<td>DT: < 300</td>
<td>DT: > 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: < 250</td>
<td>CSC: 4000</td>
</tr>
<tr>
<td>Level-1 latency (μs)</td>
<td>12.5</td>
<td>DT: 20</td>
<td>DT: > 12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: 3.6</td>
<td>CSC: 28.8</td>
</tr>
<tr>
<td>Total DAQ data transfer rate (Gbit/s)</td>
<td>DT: 1082</td>
<td>DT: 42</td>
<td>DT: 3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: 1026</td>
<td>CSC: 230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSC: 2764</td>
</tr>
</tbody>
</table>

(D)CFEB event losses for HL-LHC conditions

- ME2/1 CFEB (Phase 1)
- ME3/1 CFEB (Phase 1)
- ME4/1 CFEB (Phase 1)
- ME2/1 DCFEB (Phase 2)
Why Upgrade CSCs for HL-LHC (Runs 4+)?

- **LHC Upgrade for Run 3**
 - Collision energy increase $\sqrt{s} = 13 \rightarrow 13.6 \text{ TeV}$
 - Luminosity approx. 2x nominal, $2 \times 10^{34}s^{-1} \text{cm}^{-2}$
 - **Detectors should handle Run 3 easily**

- **LHC Upgrade for HL-LHC**
 - Full design energy $\sqrt{s} = 14 \text{ TeV}$
 - Luminosity to reach 5-7.5x LHC nominal
 - Expected rate: 200 collisions/crossing @ 40 MHz
 -- > **Higher detector occupancy**
 -- > **Need faster triggers+DAQ**

Table: HL-LHC needs vs CMS 2017 vs CMS upgraded

<table>
<thead>
<tr>
<th></th>
<th>HL-LHC needs</th>
<th>CMS 2017</th>
<th>CMS upgraded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1 trigger accept rate (kHz)</td>
<td>500</td>
<td>DT: < 300</td>
<td>DT: $>$ 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: < 250</td>
<td>CSC: 4000</td>
</tr>
<tr>
<td>Level-1 latency (µs)</td>
<td>12.5</td>
<td>DT: 20</td>
<td>DT: $>$ 12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: 3.6</td>
<td>CSC: 28.8</td>
</tr>
<tr>
<td>Total DAQ data transfer rate (Gbit/s)</td>
<td>DT: 1082</td>
<td>DT: 42</td>
<td>DT: 3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: 1026</td>
<td>CSC: 230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSC: 2764</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Why Upgrade CSCs for HL-LHC (Runs 4+)?

◦ LHC Upgrade for Run 3
 – Collision energy increase $\sqrt{s} = 13 \rightarrow 13.6 \text{TeV}$
 – Luminosity approx. 2x nominal, $2 \times 10^{34} \text{s}^{-1} \text{cm}^{-2}$
 – **Detectors should handle Run 3 easily**

◦ LHC Upgrade for HL-LHC
 – Full design energy $\sqrt{s} = 14 \text{TeV}$
 – Luminosity to reach 5-7.5x LHC nominal
 – Expected rate: 200 collisions/crossing @ 40 MHz
 -> **Higher detector occupancy**
 -> **Need faster triggers+DAQ**

<table>
<thead>
<tr>
<th>HL-LHC needs</th>
<th>CMS 2017</th>
<th>CMS upgraded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1 trigger accept rate (kHz)</td>
<td>500 DT: < 300 CSC: < 250</td>
<td>DT: ≥ 500 CSC: 4000</td>
</tr>
<tr>
<td>Level-1 latency (μs)</td>
<td>12.5 DT: 20 CSC: 3.6</td>
<td>DT: ≥ 12.5 CSC: 28.8</td>
</tr>
<tr>
<td>Total DAQ data transfer rate (Gbit/s)</td>
<td>DT: 1082 CSC: 1026</td>
<td>DT: 3600 CSC: 2764</td>
</tr>
</tbody>
</table>

![Graph of CFEB event losses for HL-LHC conditions](graph.png)
Why Upgrade CSCs for HL-LHC (Runs 4+)?

○ LHC Upgrade for Run 3
 — Collision energy increase \(\sqrt{s} = 13 \rightarrow 13.6 \text{ TeV} \)
 — Luminosity approx. 2x nominal, \(2 \times 10^{34} \text{s}^{-1} \text{cm}^{-2} \)
 — **Detectors should handle Run 3 easily**

○ LHC Upgrade for HL-LHC
 — Full design energy \(\sqrt{s} = 14 \text{ TeV} \)
 — Luminosity to reach 5-7.5x LHC nominal
 — Expected rate: 200 collisions/crossing @ 40 MHz
 —→ **Higher detector occupancy**
 —→ **Need faster triggers+DAQ**

○ CSCs Need Upgrades for HL-LHC
 — Cathode Front End Board (CFEB) needs more memory, analog storage replaced with digital/flash → DCFEB
 — Local track builder need more memory and bandwidth, install new FPGAs with larger buffer
 — New electronics → increased power consumption
 — Optical readout necessary throughout muon systems

HL-LHC vs CMS nominal vs upgraded

<table>
<thead>
<tr>
<th></th>
<th>HL-LHC needs</th>
<th>CMS 2017</th>
<th>CMS upgraded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1 trigger accept rate (kHz)</td>
<td>500</td>
<td>DT: < 300</td>
<td>DT: ≥ 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: < 250</td>
<td>CSC: 4000</td>
</tr>
<tr>
<td>Level-1 latency ((\mu)s)</td>
<td>12.5</td>
<td>DT: 20</td>
<td>DT: ≥ 12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: 3.6</td>
<td>CSC: 28.8</td>
</tr>
<tr>
<td>Total DAQ data transfer rate (Gbit/s)</td>
<td>DT: 1082</td>
<td>DT: 42</td>
<td>DT: 3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC: 1026</td>
<td>CSC: 230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSC: 2764</td>
</tr>
</tbody>
</table>
Electronics of CSCs

ME1/1 is closest to interaction point
Target of most upgrades
Electronics of CSCs

LVDB/LVMB: Low Voltage Distribution (Monitoring) Board

AFEB
Anode
Front End Board

(D)CFEB
(Digital) Cathode
Front End Board

ALCT+Mezzanine
Anode Local Charged Track

ME1/1 chambers

ME1/1 is closest to interaction point
Target of most upgrades

LVDB/LVMB:
Low Voltage Distribution (Monitoring) Board

CMS-TDR-016
Electronics of CSCs

LVDB/LVMB: Low Voltage Distribution (Monitoring) Board

AFEB
Anode Front End Board

(D)CFEB
(Digital) Cathode Front End Board

ALCT+Mezzanine
Anode Local Charged Track

AFEBs

CMS-TDR-016

ME1/1 chambers

Peripheral crate (VME)

VCC
CCB
MPC

9×OTMB

FED crate (VME)

12×DDU

9×ODMB

LVDB7

ALCT-S6

ME1/1 is closest to interaction point
Target of most upgrades
Electronics of CSCs

LVDB/LVMB: Low Voltage Distribution (Monitoring) Board

AFEB
Anode Front End Board

(D)CFEB
(Digital) Cathode Front End Board

ALCT+Mezzanine
Anode Local Charged Track

(O)TMB
(Optical) Trigger Mother Board

(O)DMB
(Optical) Data Mother Board

CMS-TDR-016

ME1/1 is closest to interaction point
Target of most upgrades
Electronics of CSCs

- **LVDB/LVMB**: Low Voltage Distribution (Monitoring) Board
- **AME1**: Closest to interaction point
- **Target of most upgrades**
- **CMS-TDR-016**

Board Components
- **AFEBS**: Anode Front End Board
- **(D)CFEB**: Digital Cathode Front End Board
- **ALCT+Mezzanine**: Anode Local Charged Track
- **(O)TMB**: Optical Trigger Mother Board
- **(O)DMB**: Optical Data Mother Board

Peripheral crate (VME)
- **VCC**
- **CCB**
- **MPC**
- **9×OTMB**
- **9×ODMB**

FED crate (VME)
- **12×DDU**

Iron yoke

Notation
- **L1A**
- **TTC**

Diagram
- ME1/1 is closest to interaction point
- Target of most upgrades
Electronics of CSCs

- ME1/1 is closest to interaction point
- Target of most upgrades

- AFEB: Anode Front End Board
- (D)CFEB: (Digital) Cathode Front End Board
- ALCT+Mezzanine: Anode Local Charged Track
- (O)TMB: (Optical) Trigger Mother Board
- (O)DMB: (Optical) Data Mother Board
- FED/DDU: Front End Driver Detector Dependent Unit

- LVDB/LVMB: Low Voltage Distribution (Monitoring) Board

- CMS-TDR-016

- L1A
- TTC
- Iron yoke

- Peripheral crate (VME): VCC, CCB, MPC, 9×OTMB, 9×ODMB
- FED crate (VME): 12×DDU
Electronics of CSCs

- AFEB: Anode Front End Board
- (D)CFEB: (Digital) Cathode Front End Board
- ALCT+Mezzanine
- LVDB/LVMB: Low Voltage Distribution (Monitoring) Board
- (O)TMB: (Optical) Trigger Mother Board
- (O)DMB: (Optical) Data Mother Board
- CMS DAQ: Front End Driver Detector Dependent Unit

ME1/1 chambers

- L1A
- Peripheral crate (VME): VCC, CCB, MPC
- 9×OTMB
- 9×ODMB
- L1A
- TTC
- Iron yoke

ME1/1 is closest to interaction point
Target of most upgrades
Preparing for the HL-LHC

Phase-I

DCFEBs for ME1/1
LV for ME1/1
Install ME4/2 Stations
Upgrade Trigger Electronics

Run 1 | LS1 | Run 2 | LS2 | LS2 | Run 3 | LS3 | Run 4
2013 | 2015 | 2018 | March 2020 | 2022 | 2025 | 2027
Preparing for the HL-LHC

Phase-I
DCFEBs for ME1/1
LV for ME1/1
Install ME4/2 Stations
Upgrade Trigger Electronics

Run 1 LS1 Run 2 LS2 LS2 Run 3 LS3 Run 4
2013 2015 2018 March 2020 2022 2025 2027
Preparing for the HL-LHC

Phase-I
- DCFEBs for ME1/1
- LV for ME1/1
- Install ME4/2 Stations
- Upgrade Trigger Electronics

Phase-II
- DCFEBv2+Cooling for ME1/1
- DCFEBs for ME234/1

Run 1
- 2013
- LS1

Run 2
- 2015
- 2018
- LS2

Run 3
- March 2020
- 2022
- LS3

Run 4
- 2025
- 2027

2013
2015
2018
March 2020
2022
2025
2027
Preparing for the HL-LHC

Phase-I
DCFEBs for ME1/1
LV for ME1/1
Install ME4/2 Stations
Upgrade Trigger Electronics

Phase-II
DCFEBv2+Cooling for ME1/1
DCFEBs for ME234/1

Run 1
LS1
2013
2015

Run 2
LS2
2018
March 2020

Run 3
LS3
2022
2025
2027

Run 4
2027
Preparing for the HL-LHC

Phase-I
DCFEBs for ME1/1
LV for ME1/1
Install ME4/2 Stations
Upgrade Trigger Electronics

Phase-II
DCFEBv2 + Cooling for ME1/1
DCFEBs for ME234/1
LV for ME234/1, HV for ME1/1

Run 1
LS1
Run 2
LS2
LS2
Run 3
LS3
Run 4

2013
2015
2018
March 2020
2022
2025
2027
Preparing for the HL-LHC

Phase-I
- DCFEBs for ME1/1
- LV for ME1/1
- Install ME4/2 Stations
- Upgrade Trigger Electronics

Phase-II
- DCFEBv2+Cooling for ME1/1
- DCFEBs for ME234/1
- LV for ME234/1, HV for ME1/1
- ALCT Mezzanine for ME1234/1, ME123/2, ME1/3

Diagram showing timeline and locations of various stations and upgrades for different runs:
- Run 1: 2013-2015
- Run 2: 2018, LS2 March 2020
- Run 3: 2022, LS3
- Run 4: 2025-2027

Legend:
- Orange: DCFEBs ME1/1
- Red: LV ME1/1
- Yellow: ME4/2 Stations
- Green: Phase-I LV/HV ME1/1
- Blue: Phase-II LV/HV ME1/1

Diagram shows locations of various stations and upgrades around the CMS detector.
Preparing for the HL-LHC

Phase-I
- DCFEBs for ME1/1
- LV for ME1/1
- Install ME4/2 Stations
- Upgrade Trigger Electronics

Phase-II
- DCFEBv2+Cooling for ME1/1
- DCFEBs for ME234/1
- LV for ME234/1, HV for ME1/1
- ALCT Mezzanine for ME1234/1, ME123/2, ME1/3
- Upgrade Trigger Electronics

Run 1: 2013 - 2015
Run 2: 2018, LS2: March 2020
Run 3: 2022
Run 4: 2025 - 2027

180 CSC Dismounted, Upgraded, Reinstalled
288 CSC Upgraded In-Situ
Preparing for the HL-LHC

Phase-I
DCFEBs for ME1/1
LV for ME1/1
Install ME4/2 Stations
Upgrade Trigger Electronics

Phase-II
DCFEBv2+Cooling for ME1/1
DCFEBs for ME234/1
LV for ME234/1, HV for ME1/1
ALCT Mezzanine for ME1234/1, ME123/2, ME1/3
Upgrade Trigger Electronics

180 CSC Dismounted, Upgraded, Reinstalled
288 CSC Upgraded In-Situ

We Are Here
On-Detector Refurbishment of Electronics

ALCT Mezzanines and DCFEBs
On-Detector Refurbishment of Electronics
ALCT Mezzanines and DCFEBs

- 108 ALCT-LX150T Mezzanine boards installed in all ME234/1
- 288 ALCT-LX100T Mezzanine boards installed in ME1/1, 123/2
On-Detector Refurbishment of Electronics
ALCT Mezzanines and DCFEBs

- 108 ALCT-LX150T Mezzanine boards installed in all ME234/1
- 288 ALCT-LX100T Mezzanine boards installed in ME1/1,123/2
- 504 DCFEBv2 installed in ME1/1 and 45 in ME+2/1, older DCFEB from ME1/1 → ME234/1
On-Detector Refurbishment of Electronics
ALCT Mezzanines and DCFEBs

- 108 ALCT-LX150T Mezzanine boards installed in all ME234/1
- 288 ALCT-LX100T Mezzanine boards installed in ME1/1,123/2
- 504 DCFEBv2 installed in ME1/1 and 45 in ME+2/1, older DCFEB from ME1/1 → ME234/1
- New boards capable of optical readout
Upgrading the Power for CSCs
Upgrading the Power for CSCs

○ Need to satisfy new power requirement of DCFEBs
 — Current 9.8/5.5 -> 22.8/13.0 Amps, increase of 144 W per chamber

○ Low-Voltage Distribution Boards produced and installed on each of 18 chambers for the inner-rings (1) of ±2/3/4 stations, 108 total
Upgrading the Power for CSCs

- Need to satisfy new power requirement of DCFEBs
 - Current 9.8/5.5 -> 22.8/13.0 Amps, increase of 144 W per chamber

- Low-Voltage Distribution Boards produced and installed on each of 18 chambers for the inner-rings (1) of ±2/3/4 stations, 108 total
Upgrading the Power for CSCs

- Need to satisfy new power requirement of DCFEBs
 - Current 9.8/5.5 -> 22.8/13.0 Amps, increase of 144 W per chamber

- Low-Voltage Distribution Boards produced and installed on each of 18 chambers for the inner-rings (1) of ±2/3/4 stations, 108 total

- Additional 12 Power Supplies, Junction Boxes distributing LV supply installed
Upgrading the Power for CSCs

- Need to satisfy new power requirement of DCFEBs
 - Current 9.8/5.5 -> 22.8/13.0 Amps, increase of 144 W per chamber

- Low-Voltage Distribution Boards produced and installed on each of 18 chambers for the inner-rings (1) of ±2/3/4 stations, 108 total

- Additional 12 Power Supplies, Junction Boxes distributing LV supply installed
Upgrading the Power for CSCs

- Need to satisfy new power requirement of **DCFEBs**
 - Current 9.8/5.5 -> 22.8/13.0 Amps, **increase of 144 W per chamber**

- **Low-Voltage Distribution Boards** produced and installed on each of 18 chambers for the inner-rings (1) of ±2/3/4 stations, 108 total

- Additional 12 **Power Supplies, Junction Boxes** distributing LV supply installed

- ME1/1 LV upgraded during LS1, HV during LS2
ME1/1 Cooling Loop Upgrade

OLD

New
ME1/1 Cooling Loop Upgrade

DCFEBs, ALCT, LVDB
all contact-cooled

OLD

New
ME1/1 Cooling Loop Upgrade

DCFEBs, ALCT, LVDB
all contact-cooled

Old cooling loop had joints, leak risk
ME1/1 Cooling Loop Upgrade

DCFEBs, ALCT, LVDB all contact-cooled

Old cooling loop had joints, leak risk

New cooling loop is single-circuit
ME1/1 Cooling Loop Upgrade

DCFEBs, ALCT, LVDB
all contact-cooled

Old cooling loop had joints, leak risk

New cooling loop is single-circuit

Replaced for all ME1/1
Chamber Re-Installation

1: Refurbish+Test

2: Transport

3: Load on Fixture

4: Hoist with crane

5: Install+Commission on CMS
Chamber Re-Installation

1: Refurbish+Test

2: Transport

3: Load on Fixture

4: Hoist with crane

5: Install+Commission on CMS
Chamber Re-Installation

1: Refurbish+Test

3: Load on Fixture

2: Transport

4: Hoist with crane

5: Install+Commission on CMS
Chamber Re-Installation

1: Refurbish+Test

2: Transport

3: Load on Fixture

4: Hoist with crane

5: Install+Commission on CMS
Chamber Re-Installation

1: Refurbish+Test
2: Transport
3: Load on Fixture
4: Hoist with crane
5: Install+Commission on CMS
Chamber Re-Installation

1: Refurbish+Test

2: Transport

3: Load on Fixture

4: Hoist with crane

5: Install+Commission on CMS
Chamber Re-Installation

1: Refurbish+Test

2: Transport

3: Load on Fixture

4: Hoist with crane

5: Install+Commission on CMS
Chamber Re-Installation

1: Refurbish+Test

2: Transport

3: Load on Fixture

4: Hoist with crane

5: Install+Commission on CMS

x180 Chambers!

108 ME234/1
x72 ME1/1
Test $\varphi \varphi$ collisions at 900 GeV - Nov 2021
- A candidate $J/\psi \rightarrow \mu \mu$ event in the CSCs
- Invariant mass of the two global muons = 3.1 GeV
- +RPC rechits on one muon;
- +GEM segment on the other
Summary and Outlook
Summary and Outlook
Summary and Outlook

• CSC upgrades for LS2 is complete
 — On-Chamber electronics updated:
 DCFEB(v2), ALCT Mezzanine, LVDB/LVMB
 — Low Voltage for ME234/1 upgraded
 — High Voltage for ME1/1 upgraded
 — Trigger integration with GEM subsystem underway
Summary and Outlook

• CSC upgrades for LS2 is complete
 — On-Chamber electronics updated:
 DCFEB(v2), ALCT Mezzanine, LVDB/LVMB
 — Low Voltage for ME234/1 upgraded
 — High Voltage for ME1/1 upgraded
 — Trigger integration with GEM subsystem underway

• All chambers re-installed into CMS
 — Commissioning work since early 2021
 — Successful 900 GeV (test) data taking w/ full magnet in October 2021
Summary and Outlook

• CSC upgrades for LS2 is complete
 — On-Chamber electronics updated:
 DCFEB(v2), ALCT Mezzanine, LVDB/LVMB
 — Low Voltage for ME234/1 upgraded
 — High Voltage for ME1/1 upgraded
 — Trigger integration with GEM subsystem underway

• All chambers re-installed into CMS
 — Commissioning work since early 2021
 — Successful 900 GeV (test) data taking w/ full magnet in October 2021

• Preparations for Run 3 and LS3 underway
 — Run 3 expected to begin Spring 2022
 — ODMB, FED, and possible HV upgrades during LS3
Thanks!
Backup
Detecting Particles in CMS

Tracker:
Measures momentum of charged particles
\((e^\pm, \mu^\pm, \pi^\pm, K^\pm)\)

EM Calorimeter:
Measures energy of EM showers
\((\gamma, e^\pm, \pi^0 \rightarrow \gamma \gamma, K_S^0)\)

Hadronic Calorimeter:
Measures energy of hadronic showers
\((\pi^\pm, K^\pm, K_L^0, p, n)\)

Muon Spectrometer
Measures momentum of surviving minimal ionizing (charged) particles, i.e. muons

\(\pm\)
Electronics of CSCs

AFEB:
Anode Front End Board
Relays signals from wires

(D)CFEB:
(Digital) Cathode Front End Board
Relays signals from strips

ALCT+Mezzanine:
Anode Local Charged Track
Find patterns from AFEB for trigger

(O)TMB:
(Optical) Trigger Mother Board
Builds patterns from ALCT/(D)CFEB to build Local Charged Trigger

(O)DMB:
(Optical) Data Mother Board
When triggered, exports data to Data Acquisition System (DAQ) system

LVDB/LVMB:
Low Voltage Distribution (Monitoring) Board
Power to on-board electronics

ME1/1 is closest to interaction point
Target of most upgrades
Electronics of CSCs

AFEB: Anode Front End Board
Relays signals from wires

(D)CFEB: (Digital) Cathode Front End Board
Relays signals from strips

ALCT+Mezzanine: Anode Local Charged Track
Find patterns from AFEB for trigger

(O)TMB: (Optical) Trigger Mother Board
Builds patterns from ALCT/(D)CFEB to build Local Charged Trigger

(O)DMB: (Optical) Data Mother Board
When triggered, exports data to Data Acquisition System (DAQ) system

LVDB/LVMB: Low Voltage Distribution (Monitoring) Board
Power to on-board electronics

FED/DDU: Front End Driver Detector Dependent Unit

ME1/1 chambers
ME1/1 is closest to interaction point
Target of most upgrades
Non-Uniform Magnetic Field in Muon End-Caps

— Within barrel ($|z| < 6m$), $\vec{B} \sim B_B \hat{z}$
— In end-cap yoke: $\vec{B} \sim B_{EC} \hat{r}$
— Bending direction changes before muon exits CMS
References

○ The Phase-2 Upgrade of the CMS Muon Detectors:
 CERN-LHCC-2017-012 ; CMS-TDR-016

○ HL-LHC Public Pages:
 – voisins.cern
 – hilumilhc.web.cern.ch

○ CMS Detector Figures:
 – Particle-flow reconstruction and global event description with the CMS detector:
 JINST 12 (2017) P10003
 – Cutaway Diagrams of CMS Detector:
 J. Phys.: Conf. Ser. 513 022032
 – Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using Cosmic Rays:
 JINST 5 (2010) T03021

○ CMS Event Display Generator:
 http://opendata.cern.ch/visualise/events/cms#