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Motivation: HL-LHC

A

e Remarkable performance so far
exceeding initial expectations

e But, things have just begun with ~5% of
total expected data collected
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Significant increase in instantaneous
luminosity
o 5x10%(7.5x10*)cm?s™ for 140
(200) PU in Run 4 (Run 5)
e Opportunity for Higgs boson
precision studies, precision SM tests
and BSM searches 2




Motivation: HL-LHC

R R ~'"{HL-LHC: 0(140) p-p collisions in one bunch crossing l» T HL-LHC: A lot of activity in the CMS detector
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But we have to pay to play!!

High Pileup

o ~200 collisions/BX (4-5x LHC)
High Radiation Level

o 1y @HL-LHC ~10y @LHC




Motivation: HL-LHC
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Existing endcap calorimeters will
suffer the most — Replace with HGCal




CMS Phase-1II Upgrade Endcap Calorimeter

High Granularity Calorimeter (HGCAL): granular and radiation hard endcap calorimeter replacement

Full Si layers and Si/Scint mixed layers

Calorimeter Endcap Electromagnetic (CE-E) Calorimeter Endcap Hadronic (CE-H)

e EM focused part e HAD focused part (hybrid structure)
Active material Active material

e 26 Layers of Si (cell size: 0.5-1 cm?) e 7 Layers of Si (cell size: 0.5-1 cm?)
Passive material e 14 Layers of Si and plastic scintillator

e Pb, CuW, Cu Passive material

o 277X, e Stainless Steel, Cu

e 10.0A



CMS Phase-1II Upgrade Endcap Calorimeter

High Granularity Calorimeter (HGCAL): granular and radiation hard endcap calorimeter replacement

Full Si layers and Si/Scint mixed layers

Calorimeter Endcap Electromagnetic (CE-E) Calorimeter Endcap Hadronic (CE-H)

e EM focused part e HAD focused part (hybrid structure)
Active material Active material

e 26 Layers of Si (cell size: 0.5-1 cm?) e 7 Layers of Si (cell size: 0.5-1 cm?)
Passive material e 14 Layers of Si and plastic scintillator

e Pb, CuW, Cu Passive material

o 277X, e Stainless Steel, Cu

~ 6M Si sensor channels 10.0 A



Reconstruction in HGCAL

Tracks and clusters clearly
identifiable by eye throughout
most of detector.
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Reconstruction in HGCAL

Reconstruction in HGCAL is a real challenge due to the granularity
and high PU environment
e Imaging calorimeter with very fine lateral and longitudinal
segmentation, and precision timing capabilities
e Naive reconstruction algorithms based on considering all possible
combinatorics lead to memory/timing explosion
e  Overlapping showers are frequent in high PU and require efficient
algorithms to disentangle them

New techniques and algorithms to extract signals belonging to
individual showers and properly identify them (clustering, linking,
particle identification)
e Utilise modern computer architectures, graph theory, machine
learning etc

Efficient workflows to utilise information from the tracking and timing
detector
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TICL -

e Framework to produce 3D clusters and particle properties starting from HGCAL hits (x, y, z, E, t)
Inspired from the successful CMS Run1 iterative tracking reconstruction strategy

e Framework is modular allowing for swapping of algorithms according to particle type
e Separate subdetector-based iterations and iterations using information from other subdetectors
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The Iterative CLustering

TICL Iterations

e L1 object
e  Tracks

Pattern Recognition
algorithm plugin

Filter based on

PID
cleaning

Better shower property
estimates

Better subsequent
iteration



https://hgcal.web.cern.ch/Reconstruction/TICL/

CLUE [1] - CLUstering of Energy

e Energy density based 2D clustering algorithm
o Removes noise
e Produces “Layer Clusters (LCs)” starting from hits

o Dimensionality reduction by an order of magnitude °
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[1] CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, 10

C. Seez, https://arxiv.org/abs/2001.09761


https://hgcal.web.cern.ch/Reconstruction/clueAlgorithm/

Pattern Recognition Algorithms

Pattern Recognition algorithms connect 2D LC’s to form 3D clusters called “tracksters”
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Pattern Recognition Algorithms

Pattern Recognition algorithms connect 2D LC’s to form 3D clusters called “tracksters”

e Tracksters are Direct Acyclic Graphs
o Nodes are layer clusters
o Edges are defined according to connecting algorithm
e  Currently available connecting algorithms
o  Cellular Automaton
o  CLUESD (energy density based clustering using 2D layer clusters)
o FastJet
e Tracksters are linked to form high level particles

Shower reconstructed as graphs using CA(center) and CLUE3D (middle/right)

Pattern Recognition by CA
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https://hgcal.web.cern.ch/Reconstruction/TICL/

Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration
e |teration aimed at extracting EM objects first
o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction
e Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
o Mask LCs deeper inside the detector

13



Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration
e |teration aimed at extracting EM objects first
o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction
e Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
o Mask LCs deeper inside the detector
e Connect LCs using Cellular Automaton to form tracksters
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Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration
e lteration aimed at extracting EM objects first
o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction
e Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
o Mask LCs deeper inside the detector
e Connect LCs using Cellular Automaton to form tracksters
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Background from hadrons -
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[a] photon
[b,c] Early showering pion



Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration Unconverted Photons and early
e lteration aimed at extracting EM objects first showering pions in 200 PU

o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction
e Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
o Mask LCs deeper inside the detector
e Connect LCs using Cellular Automaton to form tracksters
e State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
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ROC curve (left) and discriminator scores (right) for PID based on Edge-convolution and greedy clustering based pooling [1]

[1]1 A Dynamic Reduction Network for Point Clouds, https://arxiv.org/pdf/2003.08013.pdf
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https://arxiv.org/pdf/2003.08013.pdf

Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration Unconverted Photons and early
e |teration aimed at extracting EM objects first

showering pions in 200 PU
o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction

Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
o Mask LCs deeper inside the detector

Connect LCs using Cellular Automaton to form tracksters

State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
Cleaning tracksters to get better estimates of properties
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Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration

Unconverted Photons and early

lteration aimed at extracting EM objects first showering pions in 200 PU

o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction

Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
o Mask LCs deeper inside the detector

Connect LCs using Cellular Automaton to form tracksters

State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
Cleaning tracksters to get better estimates of properties
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(Eclean/Etrackster) -1

Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration
e |teration aimed at extracting EM objects first
o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction

Unconverted Photons and early
showering pions in 200 PU

e Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage

o Mask LCs deeper inside the detector

e Connect LCs using Cellular Automaton to form tracksters
e State of the art Graph Neural Networks based patrticle ID to distinguish from early showering pions
e Cleaning tracksters to get better estimates of properties

CMS Phase-Il Simulation Preliminary
N L L A AN R AL L R RN R B

0.2

i PU =200
0.1} e
0_05 Ratio of trackster energy

1 before and after cleaning
o <—— as a function of generated §4i
02} . particle energy shows very
_0_3; little difference
04 0 200 200 500 800

Ecen [GeV]

CMS Phase-Il Simulation Preliminary
DL B B B B L

PU =200
Before cleaning |

B After cleaning Ratio of trackster
and generated
particle energy for
<80 GeV.
Cleaning removes
tails in resolution

Etrackster/ EGEN

19



(Eclean/Etrackster) -1

Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration Unconverted Photons and early
showering pions in 200 PU

e |teration aimed at extracting EM objects first

o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction

e Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage

o Mask LCs deeper inside the detector
e Connect LCs using Cellular Automaton to form tracksters

e State of the art Graph Neural Networks based patrticle ID to distinguish from early showering pions

e Cleaning tracksters to get better estimates of properties
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Putting it all together : Object Reconstruction

Demonstrating by example : Electromagnetic iteration
e |teration aimed at extracting EM objects first
o Relatively less complex than HAD objects
o Useful for electron/photon reconstruction
e Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
o Mask LCs deeper inside the detector
e Connect LCs using Cellular Automaton to form tracksters
e State of the art Graph Neural Networks based patrticle ID to distinguish from early showering pions
e Cleaning tracksters to get better estimates of properties

Tracksters and LCs filtered by the PID and/or cleaning fed back to LC collection for further HAD/MIP
iterations
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Conclusions

Reconstruction in CMS High Granularity Calorimeter poses unprecedented challenges
o  “Tracking” detector with high granularity
TICL is a highly modular and flexible framework developed in CMS for HGCAL reconstruction
o  Variety of pattern recognition algorithms can be plugged in and out
o Different strategies for different particles
CLUE is an “imaging” density based GPU friendly density-based algorithm
o  Provides building blocks for pattern recognition algorithms
o  Reduces hit multiplicity without sacrificing performance
o  Designed with parallelism in mind
Variety of strategies being actively explored for best performance in 200 PU
o  Optimal Particle Flow interpretation requires robust particle ID/ energy regression/ PCA
o  Utilise novel machine learning ideas like Graph Neural Networks
o  Strategy for purifying objects from PU contributions
Next steps:
o Improve strategies for hadron reconstruction and PF-objects interpretations
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