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Motivation: HL-LHC

● Remarkable performance so far 
exceeding initial expectations

● But, things have just begun with ~5% of 
total expected data collected 

Significant increase in instantaneous 
luminosity

● 5 × 1034 (7.5 × 1034) cm-2 s−1 for 140 
(200) PU in Run 4 (Run 5)

● Opportunity for Higgs boson 
precision studies, precision SM tests 
and BSM searches 2



Motivation: HL-LHC

But we have to pay to play!!

● High Pileup
○ ~200 collisions/BX (4-5x LHC)

● High Radiation Level
○ 1y @HL-LHC ~ 10 y @LHC
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Motivation: HL-LHC

Existing endcap calorimeters will 
suffer the most → Replace with HGCal
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CMS Phase-II Upgrade Endcap Calorimeter
High Granularity Calorimeter (HGCAL): granular and radiation hard endcap calorimeter replacement

Calorimeter Endcap Electromagnetic (CE-E)
● EM focused part

Active material
● 26 Layers of Si (cell size: 0.5-1 cm2)

Passive material
● Pb, CuW, Cu
● 27.7 X0

Calorimeter Endcap Hadronic (CE-H)
● HAD focused part (hybrid structure)

Active material
● 7 Layers of Si (cell size: 0.5-1 cm2 )
● 14 Layers of Si and plastic scintillator

Passive material
● Stainless Steel, Cu
● 10.0 λ 5
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● 7 Layers of Si (cell size: 0.5-1 cm2 )
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● Stainless Steel, Cu
● 10.0 λ 6~ 6M Si sensor channels



Reconstruction in HGCAL
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Reconstruction in HGCAL

Reconstruction in HGCAL is a real challenge due to the granularity 
and high PU environment

● Imaging calorimeter with very fine lateral and longitudinal 
segmentation, and precision timing capabilities

● Naive reconstruction algorithms based on considering all possible 
combinatorics lead to memory/timing explosion 

● Overlapping showers are frequent in high PU and require efficient 
algorithms to disentangle them

New techniques and algorithms to extract signals belonging to 
individual showers and properly identify them (clustering, linking, 
particle identification)

● Utilise modern computer architectures, graph theory, machine 
learning etc

Efficient workflows to utilise information from the tracking and timing 
detector
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TICL - The Iterative CLustering 
● Framework to produce 3D clusters and particle properties starting from HGCAL hits (x, y, z, E, t)

○ Inspired from the successful CMS Run1 iterative tracking reconstruction strategy 
● Framework is modular allowing for swapping of algorithms according to particle type 
● Separate subdetector-based iterations and iterations using information from other subdetectors
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Hits CLUE

TICL Iterations

● Pattern Recognition 
algorithm plugin

● L1 object
● Tracks

● Better shower property 
estimates

● Better subsequent 
iteration

Filter based on 
● PID
● cleaning

https://hgcal.web.cern.ch/Reconstruction/TICL/


CLUE [1] - CLUstering of Energy
● Energy density based 2D clustering algorithm

○ Removes noise
● Produces “Layer Clusters (LCs)” starting from hits

○ Dimensionality reduction by an order of magnitude

Fully parallelizable GPU-ready algorithm
● 0.8% of total offline reconstruction on single CPU core 

@PU200 
● 2 orders of magnitude faster on small GPU NVIDIA T4

O(105) Hits O(104) 2D LC

10 [1] CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, 
C. Seez , https://arxiv.org/abs/2001.09761

https://hgcal.web.cern.ch/Reconstruction/clueAlgorithm/


Pattern Recognition Algorithms
Pattern Recognition algorithms connect 2D LC’s to form 3D clusters called “tracksters”
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Pattern Recognition Algorithms
Pattern Recognition algorithms connect 2D LC’s to form 3D clusters called “tracksters”

● Tracksters are Direct Acyclic Graphs 
○ Nodes are layer clusters
○ Edges are defined according to connecting algorithm

● Currently available connecting algorithms
○ Cellular Automaton
○ CLUE3D (energy density based clustering using 2D layer clusters)
○ FastJet

● Tracksters are linked to form high level particles 
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Pattern Recognition by CA

Shower reconstructed as graphs using CA(center) and CLUE3D (middle/right)

https://hgcal.web.cern.ch/Reconstruction/TICL/


Putting it all together : Object Reconstruction 
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 
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Putting it all together : Object Reconstruction
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 

● Connect LCs using Cellular Automaton to form tracksters

Tracksters efficiency for different  pattern recognition algorithms
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○ Relatively less complex than HAD objects
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● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 
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Putting it all together : Object Reconstruction 
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 

● Connect LCs using Cellular Automaton to form tracksters
● State of the art Graph Neural Networks based particle ID to distinguish from early showering pions

[1] A Dynamic Reduction Network for Point Clouds, https://arxiv.org/pdf/2003.08013.pdf
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Unconverted Photons and early 
showering pions in 200 PU

ROC curve (left) and discriminator scores (right) for PID based on Edge-convolution and greedy clustering based pooling [1]

https://arxiv.org/pdf/2003.08013.pdf


Putting it all together : Object Reconstruction 
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 

● Connect LCs using Cellular Automaton to form tracksters
● State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
● Cleaning tracksters to get better estimates of properties

Tracksters before cleaning [all hits in red are one object]
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Cleaning tracksters to get 
rid of PU/nearby particle 
contributions based on 
shower geometry

Unconverted Photons and early 
showering pions in 200 PU



Putting it all together : Object Reconstruction 
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 

● Connect LCs using Cellular Automaton to form tracksters
● State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
● Cleaning tracksters to get better estimates of properties

Tracksters after cleaning [only hits in blue remain after cleaning]
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Cleaning tracksters to get 
rid of PU/nearby particle 
contributions based on 
shower geometry

Unconverted Photons and early 
showering pions in 200 PU



Putting it all together : Object Reconstruction
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 

● Connect LCs using Cellular Automaton to form tracksters
● State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
● Cleaning tracksters to get better estimates of properties

Ratio of trackster energy 
before and after cleaning 
as a function of generated 
particle energy shows very 
little difference
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Unconverted Photons and early 
showering pions in 200 PU

Ratio of trackster 
and generated 
particle energy for 
60<EGEN<80 GeV.
Cleaning removes 
tails in resolution 



Putting it all together : Object Reconstruction
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 

● Connect LCs using Cellular Automaton to form tracksters
● State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
● Cleaning tracksters to get better estimates of properties

Ratio of trackster energy 
before and after cleaning 
as a function of generated 
particle energy shows very 
little difference
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Unconverted Photons and early 
showering pions in 200 PU

Trackster direction 
estimates before 
and after cleaning 
shows improvement 
after cleaning



Putting it all together : Object Reconstruction 
Demonstrating by example : Electromagnetic iteration

● Iteration aimed at extracting EM objects first
○ Relatively less complex than HAD objects
○ Useful for electron/photon reconstruction

● Keep all LCs in the CE-E part of the detector + first few CE-H layers to capture leakage
○ Mask LCs deeper inside the detector 

● Connect LCs using Cellular Automaton to form tracksters
● State of the art Graph Neural Networks based particle ID to distinguish from early showering pions
● Cleaning tracksters to get better estimates of properties

Tracksters and LCs filtered by the PID and/or cleaning fed back to LC collection for further HAD/MIP 
iterations
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Conclusions
● Reconstruction in CMS High Granularity Calorimeter poses unprecedented challenges

○ “Tracking” detector with high granularity
● TICL is a highly modular and flexible framework developed in CMS for HGCAL reconstruction

○ Variety of pattern recognition algorithms can be plugged in and out
○ Different strategies for different particles

● CLUE is an “imaging” density based GPU friendly density-based algorithm
○ Provides building blocks for pattern recognition algorithms
○ Reduces hit multiplicity without sacrificing performance
○ Designed with parallelism in mind

● Variety of strategies being actively explored for best performance in 200 PU
○ Optimal Particle Flow interpretation requires robust particle ID/ energy regression/ PCA 
○ Utilise novel machine learning ideas like Graph Neural Networks
○ Strategy for purifying objects from PU contributions

● Next steps:
○ Improve strategies for hadron reconstruction and PF-objects interpretations
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