

Recent result of baryon timelike form factors at BESIII

Weimin Song

(weiminsong@jlu.edu.cn)

on behalf of the BESIII Collaboration

30th International Symposium on Lepton Photon Interactions at High Energies

Outline

- **□Baryon and form factor**
- □ Recent publications

```
Nucleon (I = \frac{1}{2}, S = 0) [PRL 124, 042001; PLB 817, 136328; NP 17, 1200–1204]
```

```
\Lambda (I = 0; S = -1) [PRD 97, 032013; PRL 123, 122003; PRD 104, L091104]
```

$$\Sigma$$
 (I = 1; S = -1) [PLB 814, 136110; arXiv: 2110.04510]

$$\mathbf{\Xi}$$
 (I = 0; S = -2) [PRL 124, 032002; PLB 820, 136557]

$$\Lambda c(I = 0; C = 1)$$
 [PRL 120, 132001; PRD 100, 072004]

□Summary

Baryon

□ Baryon is important:

Daily life is made of baryons;

Confinement system of QCD;

•••••

□ Baryon is complicated:

Out of the capability of first principle calculations;

Radius/spin of proton is not understood well;

••••

Electric and Magnetic Form Factors of Baryon could reveal its internal structure and dynamics!

Form Factor

□ Space-like FF from eB scatterting, Time-like from e⁺e⁻ annihilation :

☐ FF and cross section:

$$\sigma^{B}(s) = \frac{4\pi\alpha^{2}\beta C}{3s} \left[|G_{M}(s)|^{2} + \frac{1}{2\tau} |G_{E}(s)|^{2} \right] \qquad |G_{eff}(s)| = \sqrt{\frac{\sigma(s)}{\frac{4\pi\alpha^{2}\beta C}{3s} \left[1 + \frac{1}{2\tau}\right]}}$$

TLFF could be measured at BESIII for both nucleon and hyperon.

Proton

- Cross sections are measured with both ISR and energy scan method, and enhancement near threshold is observed;
- **Effective FF is measured with cross sections as input.**

Proton

Effective FFs - dipole law

- Clear oscillating structure: interference effect involving rescattering processed in the final state? Resonant strucutures?
- **❖** The G_E/G_M is measured by angular distribution of proton: unity.

Neutron

❖ The analysis is chanllenging: no charged tracks in the final states.

Neutron

***** Enhancement near thershold.

Neutron

Cross section ratio

BESIII FENICE¹⁰ Prediction¹¹ Prediction¹² 10⁰ 10⁻¹ 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Vs (GeV)

Effective FFs - dipole law

- Photon-proton interaction is stronger than photon-neutron;
- Oscillatory for neutron, with similar frequency but different phase to proton.

1 near threshold

Near threshod enhancement is oberserved, and beyond the pQCD predictions.

Laway from threshold

\Leftrightarrow Evidence of $\psi(3770) \rightarrow \Lambda \bar{\Lambda}$ is observed (>4.5 σ).

- No cross section enhancement near threshold;
- **❖** The cross section ratio is consistent with the expectation that FF is proportional to sum squared charge of the valence quarks. 12

Effective FFs

E near threshold

- No cross section enhancement near threshold;
- The cross section ratio is consistent with the isospin symmetry expectation.

E away from threshold

Λ c

Cross Sections

\sqrt{s} (MeV)	$lpha_{\Lambda_c}$	$ G_E/G_M $
4574.5	$-0.13 \pm 0.12 \pm 0.08$	$1.14 \pm 0.14 \pm 0.07$
4599.5	$-0.20 \pm 0.04 \pm 0.02$	$1.23 \pm 0.05 \pm 0.03$

- Near threshod enhancement is oberserved, and beyond the pQCD predictions;
- ❖ The ratio of G_E/G_M is measured by analyzing the angular distributions.

Phase of G_E and G_M

- Multidimentional analysis with a complete decomposition of the spin struture of the reaction, and the realtive phase could be measured;
- Λ case: $\Delta \Phi = 37^{\circ} \pm 12^{\circ}$ (stat) $\pm 6^{\circ}$ (syst); Λ c case: $\Delta \Phi = 0.13$ (stat) ± 0.03 (syst).

Summary

- □Based on world largest electron-positron annihilation data in the charm region, the time-like FFs of baryons are measured in a systematic way
- □Oscillation feature of effective FFs is observed for both neutron and proton, which needs further theoretical explanations
- □Cross section enhancement is observed for some baryon pairs near the threshold, but not all

THANK YOU!

Upgraded Beijing Electron Positron Collider (BEPCII)

BESIII Detector

Charged-particle momentum resolution@1GeV: 0.5%

Photon energy resolution@1 GeV: 2.5% (5%) for barrel (endcap); position resolution 6mm

dE/dx resolution: 6% for electrons from Bhabha process

Time resolution of TOF: 68 ps (60 ps) for barrel (endcap)

SC magnetic: 1 T

Trigger and DAQ: 4 kHz, with event size 12 Kbytes

Collaboration>500 Members from 72 institutions in 15 countries!