Cross section measurement and search for exotic states at BESIII

$e^+e^- \rightarrow p\bar{p}\eta$ and $e^+e^- \rightarrow p\bar{p}\omega$ 1

Motivation: So far no observations have been made of decays into light mesons or baryons for the $\psi(4230)$. Channels that include a proton-anti-proton pair are of special interest, since the partial width of decays of the type $V \rightarrow p\bar{p}$, where V is a (exotic) vector charmonia and h is a light, unflavored meson, can be related to the production cross section $\sigma \rightarrow Vh$ (PANDA) 2.

Analysis:

![Diagram showing cross sections](image)

Born cross sections successfully determined.

Upper limits σ_{ul}:

- $\psi(4230) \rightarrow p\bar{p}\eta$: 7.5 pb
- $\psi(4230) \rightarrow p\bar{p}\omega$: 10.4 pb

$e^+e^- \rightarrow \gamma X_{c0,c1,c2}$ 12

Motivation: Exotic vector charmonia ψ have shown strong couplings to hidden-charm final states, which indicates that they might be non-conventional quarkonium states. Radiative transition rates between conventional charmonium states have been predicted from potential models 12, e.g. for $E1$ transitions between $\psi(4040)/\psi(4160)/\psi(4415)$ and X_{cJ} states in the range of $0 \text{ keV}, 35 \text{ keV}$. These values can be compared with those belonging to the exotic ψ states and thus help to understand their nature.

Analysis:

![Diagram showing data and analysis](image)

$e^+e^- \rightarrow \gamma X_{c0,c1,c2}$ successfully observed.

$e^+e^- \rightarrow \psi(3686) \rightarrow \gamma X_{c2}$ observed with 5.8σ.

Supports the radiative transition.

$e^+e^- \rightarrow \gamma X_{c0}$ not found.

$e^+e^- \rightarrow D_s^+D_s^- + c.c.$ 15

Motivation: Three excited P-wave states above the $D^{(*)}K$ threshold have been observed and are listed in the PDG, namely the $D_{s2}^*(2317)^-$, $D_{s1}(2460)^+$ and $D_{s2}(2536)^+$. However, the masses of the former two are significantly lower than the theoretical predictions for the charmed-strange mesons in the P-wave doublet 16. This has inspired various exotic explanations, such as tetraquark states or $D^{(*)}K$ molecule states (see 15). Moreover, the study of $e^+e^- \rightarrow D_s^+D_s^-$ at BESIII may provide insights into the nature of exotic vector charmonia.

Analysis:

First measurement of these processes.

No significant coupling of (exotic) vector charmonia to the investigated final states was found.

$D_{s2}^*(2317)^-$: dots; $D_{s1}(2460)^+$: rectangles; $D_{s2}(2536)^+$: triangles

BESIII Detector/Charmonia
