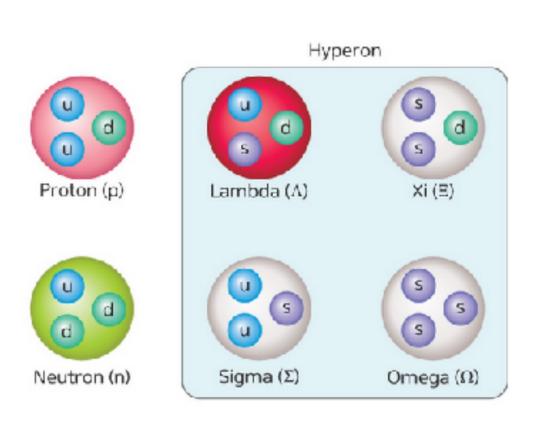


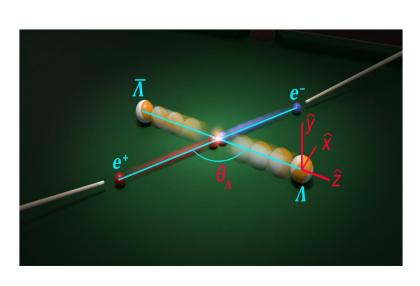
Abstract

The BESIII experiment at the electron positron collider BECPII in Beijing is successfully operating since 2008 and has collected large data samples in the tau-mass region, including the world's largest data samples: 10 Billion J/ ψ and 3 Billion $\psi(3686)$.

The recent observation of hyperon polarizations at BESIII opens a new window for testing CP conservation, as it allows for simultaneous production and detection of hyperon and anti-hyperon pair two body weak decays. The CP-symmetry tests can be performed in processes of Λ , Σ , Ξ pair production.


For the Ξ decay, it is possible to perform three independent CP tests and determine the strong phase and weak phase difference.

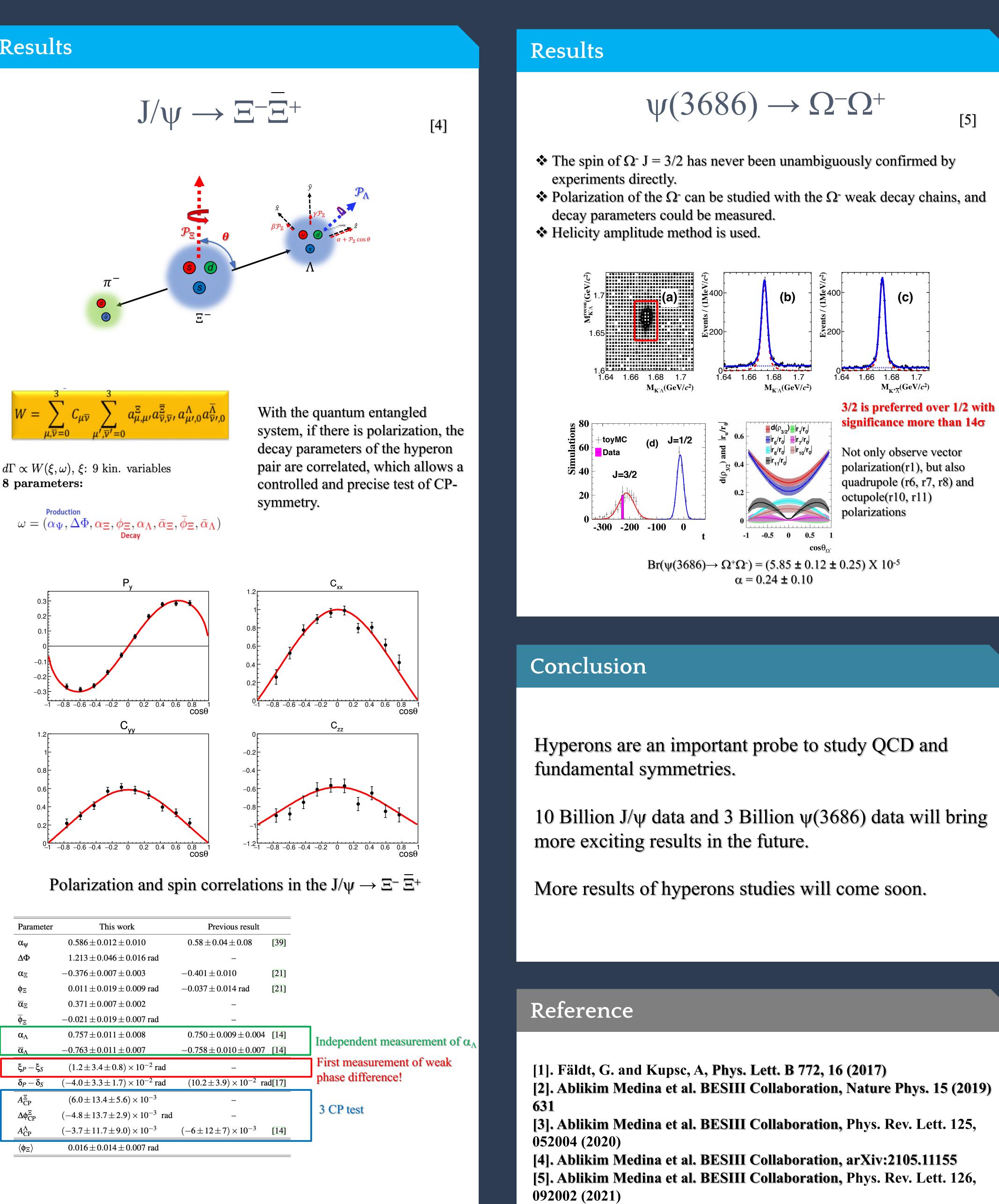
Introduction


RPC: 9 layers	Electro Magnetic Calorimeter	RPC : 8 Aayers
SC Solenoid		
Barrel ToF		cos0=0.83
Endcap ToF		3 θ=0.90
SC Quadrupole		=0.93

Update of BEPC (start collisions July 2008) Beam energy	ted 2004, first 1 - 2.47 GeV
Optimum energy	1.89 GeV
Single beam current	0.91 A
Crossing angle	11mrad
Design luminosity	$1 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Achieved	$1 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Decay	\mathcal{B} (10^{-5})	Events at BESIII
$J/\psi \to \Lambda \bar{\Lambda}$	189 ± 9	18.9×10^{6}
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	150 ± 24	15.0×10^{6}
$J/\psi ightarrow \Xi ar{\Xi}$	97 ± 8	$9.7 imes10^6$
$\psi(2S) \to \Sigma \bar{\Sigma}$	23.2 ± 1.2	116×10^{3}
$\psi(2S) o \Omega \bar{\Omega}$	5.66 ± 0.30	$28 imes 10^3$

Hyperons are a laboratory for strong interaction and baryon structure.



Hyperon pair production could be used to study the polarization, decay parameter and CP test.

Light Hyperon Physics at **BES**

Liang Yan (On behalf of BESIII Collaboration) Fudan University, Shanghai, China

Methodology	
Unpolarized e ⁺ e ⁻ beams \rightarrow Transverse polarization: [1] $P_{y}(\cos \theta_{\Lambda}) = \frac{\sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \cos \theta_{\Lambda} \sin \theta_{\Lambda}}{1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda}}$ $d\sigma \propto \mathcal{W}(\boldsymbol{\xi}) d\boldsymbol{\xi} \qquad \boldsymbol{\xi} = (\theta, \theta_{p}, \phi_{p}, \theta_{\bar{p}}, \phi_{\bar{p}})$ $\mathcal{W}(\boldsymbol{\xi}) = \mathcal{T}_{0}(\boldsymbol{\xi}) + \alpha_{\psi} \mathcal{T}_{5}(\boldsymbol{\xi}) \qquad \text{SPIN CORRELATIONS}$ $= -\alpha_{0} \overline{\alpha}_{0} \left(\mathcal{T}_{1}(\boldsymbol{\xi}) + \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \mathcal{T}_{2}(\boldsymbol{\xi}) + \alpha_{\psi} \mathcal{T}_{6}(\boldsymbol{\xi}) \right)$ $+ \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \left[\alpha_{0} \mathcal{T}_{3}(\boldsymbol{\xi}) - \overline{\alpha_{0}} \mathcal{T}_{4}(\boldsymbol{\xi}) \right]. \qquad \text{POLARIZATIONS}$	
Results	
$J/\psi \rightarrow \Lambda\bar{\Lambda}$ (2) $\int_{0}^{0} \int_{0}^{0} \int_{0$	
$\frac{1}{d \cos \theta} - \sqrt{1 - \alpha_{\psi}^{2} \alpha_{0} \sin \Delta \Phi \cos \theta \sin \theta} \qquad M(\cos \theta) = (m/N) \sum_{i}^{N_{e}} (\sin \theta_{p}^{i} \cos \phi_{p}^{i} - \sin \theta_{p}^{i} \cos \phi_{p}^{i})$ $\frac{1}{d \cos \theta} - \sqrt{1 - \alpha_{\psi}^{2} \alpha_{0} \sin \Delta \Phi \cos \theta \sin \theta} \qquad M(\cos \theta) = (m/N) \sum_{i}^{N_{e}} (\sin \theta_{p}^{i} \cos \phi_{p}^{i} - \sin \theta_{p}^{i} \cos \phi_{p}^{i})$ $\frac{1}{d \cos \theta} - \frac{1}{d \cos \theta} - \frac{1}{d \cos \theta} + \frac{1}{d \cos$	

