DOUBLE HIGGS SEARCHES AT CMS

Davide Zuolo
INFN Milano - Bicocca
On behalf of the CMS collaboration
Standard Model (SM)

- The measurement of $\sigma(HH)$ is the best way to extract the Higgs self-coupling λ_{HHH}
- This parameter defines the shape of the Higgs potential together with m_H and the vacuum expectation value (v)

Gluon-Gluon Fusion (GGF):
Destructive interference between the two diagrams leads to a small cross section (31.05 fb)

Vector Boson Fusion (VBF):
Cross section: 1.726 fb
Unique handle to probe $VVHH$ coupling (C_{2V})
Beyond Standard Model (BSM)

- Anomalous values of the couplings affects both the cross section and the kinematics of HH production.

- They are modelled through coupling modifiers
 - \(k_\lambda = \lambda_{\lambda\lambda}/\lambda_{\lambda\lambda,SM} \)
 - \(k_{2V} = C_{2V}/C_{2V,SM} \)
 - \(k_V = C_V/C_{V,SM} \)

- Searches for \(X \rightarrow HH \rightarrow xxyy \) are motivated by models with a warped extra dimension (WED), as proposed by Randall and Sundrum
 - spin-0 radion \([1-2-3]\)
 - spin-2 first Kaluza–Klein (KK) excitation of the graviton \([4-5-6]\)
Outline

Analyses made public in 2021 using the full LHC Run II (2016+2017+2018) dataset (138 fb⁻¹)

■ Non-resonant analyses
 - GGF + VBF HH → bbbb (CMS-PAS-HIG-20-005)
 - VBF HH → bbbb boosted (CMS-PAS-B2G-21-001)

■ Resonant analyses
 - X → HH → bb+leptons boosted (CMS-PAS-B2G-20-007)
 - X → HH → bbbb boosted (CMS-PAS-B2G-20-004)
 - X → YH → bbtautau (CMS-PAS-HIG-20-014, DOI)
 - X → YH → bbbb boosted (CMS-PAS-B2G-21-003)

■ Non-resonant + resonant analysis: HH → MultiLepton (CMS-PAS-HIG-21-002)

See talk by Devdatta Majumder
bbbbb final state (highest BR)

Resolved
- Reconstruct $H \rightarrow bb$ decays from AK4 (small radius) jets
- b-jets tagged using DNN-based deepJet algorithm
- 4 b-jets \rightarrow three possible pairings \rightarrow large combinatorial
- “GGF killer” BDT to separate GGF and VBF events

Boosted
- Reconstruct $H \rightarrow bb$ decays as AK8 (large radius) jets
- Use AK8 jet substructure to identify $H \rightarrow bb$ decays with ParticleNet algorithm [Graph Neural Network - 1,2]
- MD = “Mass Decorrelated” \rightarrow No sign of sculpting of jet mass (crucial for background estimate!)
- Take the two highest p_T AK8 jets as H_1 and $H_2
GGF + VBF HH → bbb

- b-jet pairs ordered according to $D = \frac{|m_{H1} - km_{H2}|}{1 + k^2}$ → correct jet pairing ranging between 82 – 96% (91 – 98%) for the different couplings in ggF (VBF) signal events
- events categorized according to GGF-killer BDT score → GGF, VBF-SM and VBF-BSM enriched categories
- large contamination from QCD multijet production and $t\bar{t}$ +jets → Fully data driven background estimation
- Most stringent constraint on $\sigma_{SM,GGF}$ achieved so far

11/01/2022 Davide Zuolo - HH searches at CMS
VBF HH \rightarrow bbbb boosted

- In BSM scenarios with modified couplings, a significant fraction of signal becomes boosted → Enhanced sensitivity for anomalous couplings
- Reconstruct Higgs candidate mass with ParticleNet-based regression algorithm
- Use m_{HH} as observable in three purity categories
- Strongest constraint on k_{2V} achieved so far
- When the external constraints on k_V (from VH processes measurements) are included, $C_{2V} = 0$ is strongly disfavored

Allowed at 95% CL: $0.6 < k_{2V} < 1.4$
Non-resonant analyses summary

Each of the expected limits of 4b and bb\gamma\gamma with run 2 statistics are 2 times more stringent than the 2016 combination!
NEW: HH \rightarrow MultiLepton - 1

- Target decay modes: HH \rightarrow WWWW / WW$\tau\tau$ / $\tau\tau\tau\tau$, covering $\sim 7.7\%$ of the HH decays

- 7 search categories, distinguished by the number of reconstructed electrons or muons (l) and tau decaying to hadrons (τ_h)
 - $4l$, $3l+0\tau_h$, $2lss+0/1\tau_h$,
 - $3l+1\tau_h$, $1l+3\tau_h$, $2l+2\tau_h$, $0l+4\tau_h$.

- Various hypotheses tested:
 - SM prediction
 - anomalous values of SM couplings
 - Effective Field Theory interpretation (not in this talk)
 - resonant production (spin-0 and spin-2 resonances with masses between 250 and 1000 GeV)
NEW: HH \rightarrow MultiLepton - 2

Dedicated BDT trained to separate prompt leptons (from W, Z and τ decay) from nonprompt (from hadron decay) or misidentified leptons.
NEW: HH \rightarrow MultiLepton - 3

- Three BDT classifiers trained for each of the seven search categories:
 - **nonresonant HH production vs bkg** (Higgs couplings as inputs)
 - **spin-0 and spin-2 resonance vs bkg** (resonance mass as input)

- 3l WZ and 4l ZZ control regions included in the fit

Small excess (2.1 std dev significance) of data event near $m_X = 750$ GeV in the 2lss and 3l categories affecting observed limits at high mass

Allowed at 95% CL: -7.0 < k_λ < 11.2

$21.8(19.6) \times 0_{\text{SM}}$
Conclusions

- Searches for HH production using the LHC Run 2 dataset have run at full swing in CMS during 2020 and 2021.
- Two of the three most sensitive non-resonant searches (bbbb and bbγγ) have been made public → each of them sees factor 2 improvement compared to 2016 combination.
- Combination of HH non resonant searches (including the third most sensitive channel, bbττ) foreseen for spring 2022.
- Many interesting results from the investigation of boosted final states.
- Resonant searches (both X → HH and X → YH) are being performed and a combination of them is foreseen in the second half of 2022.
Additional material
Branching Ratios
Previous H→bb ID algorithms (PAS)

Figure 14: Performance comparison of the hadronically decaying H boson identification algorithms in terms of receiver operating characteristic (ROC) curves in two regions based on the p_T of the truth particle; Left: $300 < p_T < 500$ GeV, and Right: $1000 < p_T < 1500$ GeV. The H boson is forced to decay in a pair of b quarks. Additional fiducial selection criteria applied to the jets are displayed on the plots.
GGF HH \rightarrow bbbb - 1

- Trigger selections require the presence of at least four jets, three b-tagged jets, and a minimal jet momentum scalar sum (H_T)
- b-jet candidates: $P_T > 30-40$ GeV, central, deepJet medium WP, PUJetID, PFJetID
- pairings ordered according to $D = \frac{|mH_1-km_2|}{1+k^2}$ → correct jet pairing ranging between 82 – 96% (91 – 98%) for the different couplings in ggF (VBF) signal events
- Reject events with one reconstructed muon or electron
- VBF-jet candidates (excluding b-jets) $P_T > 25$ GeV, $|\eta| < 4.7$, PUJetID, PFJetID
- VBF-jet pair selection: Two highest P_T jets with $\eta(j_1) \times \eta(j_2) < 0$

Background estimation is fully data-driven
- Analysis (A) and Validation (V) regions
- ‘4b’ and ‘3b’ region (4th jet btag score fails medium WP)
- BDT-based reweighting to correct for differences between the 3b and the 4b regions
GGF + VBF HH → bbbb - 2

Gluon fusion categorization
- ggF cat1 or Low-\(m_{HH}\): \(m_{HH} < 450\) GeV
- ggF cat2 or High-\(m_{HH}\): \(m_{HH} \geq 450\) GeV
- Observable: BDT output distribution
 - SM ggF vs data-driven bkg model
 - Trained by category

Vector Boson Fusion categorization
- VBF cat1 or VBF-SM:
 - \(0.5 \leq ggfKiller < 0.97\)
 - Observable: \(m_{HH}\) distribution
- VBF cat2 or VBF-anomalous-\(k_{2V}\):
 - \(0.97 \leq ggfKiller \leq 1.0\)
 - Observable: Counting experiment
VBF HH → bbbb boosted - 1

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Combination of H_T and single-jet triggers</th>
</tr>
</thead>
</table>
| Higgs boson candidates | ≥ 2 large-radius jets with $|\eta| < 2.4$
| | $p_T^{\text{lead}} > 500 \text{ GeV}$, $p_T^{\text{subl}} > 400 \text{ GeV}$
| | $\Delta \phi > 2.6$, $\Delta \eta < 2.0$
| Lepton veto | $N_e = 0$, $N_{\mu} = 0$
| H → bb identification with ParticleNet | Three exclusive search categories based on D_{bb} working points: high purity (HP), medium purity (MP) and low purity (LP)
| VBF selections | ≥ 2 small-radius jets with $p_T > 25 \text{ GeV}$, $|\eta| < 4.7$
| | $m_{jj} > 500 \text{ GeV}$, $\Delta \eta_{jj} > 4.0$
| Signal mass range | $110 < m^{\text{lead}} < 150 \text{ GeV}$, $100 < m^{\text{subl}} < 145 \text{ GeV}$

Background contamination very limited, tail of SM processes

- **TTbar** background from simulation, with corrections from a top-enriched region
- **QCD multijet** background estimated with a data-driven method (ABCD)
While the excluded k_{2V} range changes depending on the value of k_V, the $k_{2V} = 0$ hypothesis remains excluded also in these scenarios with varied k_V values.
X → HH → bb+leptons boosted - 1

- X decays to two boosted Higgs bosons, ~ back-to-back in the boosted regime
- One Higgs decays via H → bb → identified as large radius jet using DeepAK8
 - *Soft-drop* mass m_{bb} of the jet is one of two search variables
- Other Higgs decays into a final state with leptons (H → WW* and H → ττ)
 - *Single-lepton (1l) channel*
 - Reconstruct W → qq as large radius jet → No mass constraint since W can be on- or off-shell
 - Lepton is often very close to the qq jet → Loose IDs and isolation, tailored for leptons in jets
 - *Dilepton (2l) channel*
 - No jet → cleaner event than in 1l
 - Kinematic reconstruction of the leptonic H boson four momentum is possible
- Invariant mass of H → bb and leptonic H boson (m_{HH}) is second search variable
Background events are split in four components based on the number of generator-level quarks from the immediate decay of a top quark or vector boson within $\Delta R < 0.8$ of the bb jet axis.

Two step production of templates in the m_{bb} and m_{HH} mass plane

1. produce inclusive templates combining events in multiple categories with relaxed selections
2. fit the inclusive templates to the simulated mass distributions for each of the 12 event categories to produce a unique template.
$X \rightarrow HH \rightarrow bb+\text{leptons boosted} - 3$

- Final fit performed 12 categories
 - 2 same flavour ($ee + \mu\mu$)
 - 2 opposite flavour ($e\mu$)
 - 4 single electron
 - 4 single muon

- Dilepton categories more sensitive than single lepton

- 6x (14x) improvement at low(high) m_X w.r.t. 2016 only analysis (single lepton only)