Highlights of top quark measurements with the ATLAS experiment

Lepton Photon Conference 2021 · January 11th, 2022

Ana Peixoto (LPSC Grenoble)
on behalf of the ATLAS Collaboration

Top quark

- ► Heaviest known elementary particle ($m_t \approx 173 \text{ GeV}$)
- Extremely short mean lifetime $(\approx 10^{-25} \text{ s})$
- Top quark decays before hadronisation

At the Large Hadron Collider:

- ► Dominated by gluon-gluon fusion (\approx 90% at \sqrt{s} = 13 TeV)
- Abundant production of top quarks, mostly in pairs
- \Rightarrow Essential for Standard Model (SM) precision measurements

Differential $t\bar{t}$ cross-section

- Test predictions at high energy scales by unfolding differential tt̄ measurements in distinct final states
- One focus on high p_T (boosted) top quarks
 - tt̄ production with boosting sensitive to deviations from the SM
 - Well-known discrepancies with NLO MC predictions
 - Better sensitivity to four-quark EFT operators

C. Englert, L. Moore, K. Nordstrom, M. Russell, PLB 763 (2016) 9

Boosted differential $\sigma_{t\bar{t}}$ ℓ +jets

13 TeV, 139 fb⁻¹, tt̄+jets, ATLAS-CONF-2021-031

- ▶ Event selection: = 1 ℓ , ≥ 2 b-tagged jets, ≥ 1 re-clustered jet with p_T (t) > 355 GeV and 120 < m < 220 GeV
- Iterative bayesian unfolding at particle level
- Minimising the impact of Jet Energy Scale uncertainties
 - Derivation of a scaling factor (JSF) for small-R jet energies

$$JSF = 1.00035 \pm 0.00087$$

Increase on the sensitivity to m_{top} modelling

Boosted differential $\sigma_{t\bar{t}}$ ℓ +jets

13 TeV, 139 fb⁻¹, $t\bar{t}$ +jets, ATLAS-CONF-2021-031

- Comparison to NLO MC predictions re-weighted to NNLO (QCD) + NLO (EW) for tops and tt system and additional radiation
 - NNLO reweighting improving agreement
- ▶ Reduction of jet uncertainties impact from 4.2% on σ_{total} to 0.7%
- Fiducial cross-section with a relative precision of 4.2%

$$\sigma_{t\bar{t}}$$
 = 1.267 ± 0.005 (stat) ± 0.053 pb (syst)

Boosted differential $\sigma_{t\bar{t}}$ ℓ +jets

13 TeV, 139 fb⁻¹, tt+jets, ATLAS-CONF-2021-031

- Fitted Wilson coefficients consistent with zero $(C_{tG} = -0.24, C_{ta}^{(8)} = 0.03)$
- Stringent limits on EFT coefficients set at 95% CL

$$C_{tG} \in [-0.68, 0.21], C_{tq}^{(8)} \in [-0.30, 0.36]$$

- High p_T affecting more C_{tq}⁽⁸⁾ while C_{tG} effects mostly seen on σ_{tt̄}
- Constraining power on C_{tq}⁽⁸⁾
 dominated by the measurements at high p_T of the hadronic top

Boosted differential $\sigma_{t\bar{t}}$ all-hadronic

13 TeV, 139 fb⁻¹, tt, ATLAS-CONF-2021-50

- ► Event selection: \geq 2 large-R jets and p_T (t) > 500 (350) GeV
- Top-tagging: Deep Neural Network top-tagger based on large-R jets substructure variables (at 80% efficiency and matched to b-tagged jets)
- b-tagging: large-R jets matched to b-tagged tracked jets
- Main backgrounds: Multijet, tt non-all-hadronic, single-top and tt + X
- Multijet estimation from non-top/b-tagged regions

Boosted differential $\sigma_{t\bar{t}}$ all-hadronic

13 TeV, 139 fb⁻¹, tt, ATLAS-CONF-2021-50

- Parton-level distributions used to measure differential cross-section
- Top p_T as a differential variable to fit ⇒ Results compatible with SM only hypothesis
- Main systematics: modelling as ISR/FSR/scale and parton shower and jet-related (JES, JER, top-tagging)
- Interpretation in terms of EFT disentangles O_{tG} and 4-quark operators: fits of seven Wilson coefficients performed with 95% CL limits within the range of (-0.8,+0.5) TeV²/Λ²

Flavour Changing Neutral Currents

- ► Top quark coupling to an up-type quark (*u* or *c*) and a neutral boson (*H*,γ,*g*,*Z*)
- ► Forbidden at tree level in the SM and heavily suppressed at loop correction by the GIM mechanism (BR < 10⁻¹²)
- Beyond the SM models enhance FCNC processes up to a BR ~ 10⁻⁴
- Possible both in tt and single-top quark production

Great place for indirect evidence / constraint on New Physics!

FCNC tZq with $Z \rightarrow \ell^+\ell^-$

13 TeV, 139 fb⁻¹, $t\bar{t}$ and single-top production, ATLAS-CONF-2021-49

- ► Trileptonic topology: $\ell^+\ell^-\ell$ (e, μ) + ≥ 1 jet (b-tagged) + E_T^{miss}
 - ► Only leptonic Z and W boson decays considered as signal
- ► Main backgrounds:
 - $ightharpoonup t\bar{t}Z$, diboson (WZ and ZZ processes) and SM tZ production
- ► Two signal regions targeting FCNC in decay and production:
 - ► SR1 ($t\bar{t}$ decay): \geq 2 jets, 1 b-tag
 - ► SR2 (tZ production): =1,2 jets, 1 b-tag
- ▶ Reconstruction of the SM ($t \rightarrow bW$) and FCNC ($t \rightarrow qZ$) top-quarks via χ^2 minimisation of kinematic properties of the final state objects
 - Orthogonality in 2 jets events with top quark mass veto

FCNC tZq with $Z \rightarrow \ell^+\ell^-$

13 TeV, 139 fb⁻¹, $t\bar{t}$ and single-top production, ATLAS-CONF-2021-49

- ► Gradient Boosted Decision Trees (GBDT) trained to better distinguish signal from background: discriminants focusing on the FCNC tt̄ decay, tZu production and tZc production processes
- ► Four separate fits performed to extract left- and right-handed results for *tZu* and *tZc* anomalous couplings:
 - SRs defined by cuts on GBDT discrimant
 - ► CRs: SRs mass side-bands, tt CR and ttZ CR

FCNC tZq with $Z \rightarrow \ell^+\ell^-$

13 TeV, 139 fb⁻¹, $t\bar{t}$ and single-top production, ATLAS-CONF-2021-49

- Good agreement between MC predictions and data
- Most stringent limits up to date on the t → Zq branching ratios obtained at 95% CL
 - Improvement by a factor of 2-3 on previous limits
 - Translation into limits on relevant EFT Wilson coefficients for both vertices

Observable	Vertex	Coupling	Observed	Expected
$\mathcal{B}(t \to Zq) [10^{-5}]$	tZu	LH	6.2	$4.9^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZu	RH	6.6	$5.1^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZc	LH	13	11 ⁺⁵
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZc	RH	12	10^{+4}_{-3}
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13^{+0.03}_{-0.02}$
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	RH	0.16	$0.14^{+0.03}_{-0.02}$
$ C_{uW}^{(23)*} $ and $ C_{uB}^{(23)*} $	tZc	LH	0.22	$0.20^{+0.04}_{-0.03}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19^{+0.04}_{-0.03}$

FCNC *tgq* with $t \rightarrow \ell \nu b$

13 TeV, 139 fb⁻¹, single-top production, 2112.01302

- ► Targeted topology: ℓ + b-tagged jet + E_T^{miss}
- ► Main backgrounds: $W + b\bar{b}$, t-channel single-top and $t\bar{t}$ production
- Dedicated 30% working point for b-tagging efficiency
- Multijet contribution determined in a data-driven way by fitting E_T^{miss} and $m_T(W)$

FCNC *tgq* with $t \rightarrow \ell \nu b$

13 TeV, 139 fb⁻¹, single-top production, 2112.01302

- Common requirements on E_T^{miss}
 (> 30 GeV), m_T(W) (> 50 GeV), jet multiplicity and lepton p_T
- Neural Network (NN) used to construct two discriminants:
 - ▶ D_1 targeting top antiquark production $(\bar{u}/\bar{c} + g \to \bar{t})$: signal region for cgt and ugt in ℓ^- channel
 - ▶ D_2 aimed at direct top quark production $(u + g \rightarrow t)$: signal region for ugt in ℓ^+ channel
- Three validation regions defined for W+jets, tt and tq production with different b-tagging efficiencies and cuts on NN discriminants

FCNC *tgq* with $t \rightarrow \ell \nu b$

13 TeV, 139 fb⁻¹, single-top production, 2112.01302

- Binned maximum-likehood fit performed separately to ugt and cgt FCNC processes
- ► Leading systematic uncertainties related to the W+jets process for the ugt fit and the modelling of the parton shower for the cgt fit
- Measured data consistent with background-only hypothesis
- ▶ Limits for FCNC *tgq* couplings set at the 95% CL for cross-sections, branching ratios and further interpreted in terms of EFT coefficients
 - ► A factor of three more restrictive than the previous ATLAS results

Coupling	$\sigma(q+g\to t)$	$\mathcal{B}(t \to gq)$	$ C_{uG}^{qt} /\Lambda^2$
tgu	3.0 pb	$0.61 (0.49) \times 10^{-4}$	0.057
tgc	4.7 pb	$3.7 (2.0) \times 10^{-4}$	0.14

Conclusions

- ► Wide variety of new top quark results using the full Run-2 data ⇒ Talk from Andrea Knue
- ▶ Precision regime with $t\bar{t}$ differential cross-section analyses using boosted topologies
- Effects from FCNC processes in the top quark sector studied with different anomalous couplings and production modes
- Strong effort to parametrise the current measurements in terms of Effective Field Theory
- ► Boosted tt cross-section measurements well suited to constrain distinct four-fermion operators
- Future analyses will be probing top quarks at even higher energy scales

Thanks for listening!

For more information: complete list of ATLAS top public results