

Run: 280231

Event: 912117525

2015-09-24 09:18:55 CEST

with the ATLAS detector

Tamara Vázquez Schröder (CERN)

on behalf of the ATLAS Collaboration

LeptonPhoton 2022 conference

Manchester/virtual - 12. January 2022

SM flavour structure

An extensive flavour puzzle...

Fermions: spin 1/2

generation

6 quarks

+ 6 anti-quarks

6 leptons

+ 6 anti-leptons

+ mass

Why similar structure of quarks and leptons?

- Underlying symmetry connecting both sectors?
- Many grand unified theories (GUT SU(5), Pati-Salam SU(4), RPV SUSY) predict
 leptoquarks (LQ), carrying
 both lepton and baryon
 number
- LQ are colour triplet bosons with a fractional electric charge
- LQ can mediate flavourchanging-neutral-currents and enable violation of lepton flavour universality

Anomalies in B-meson sector

 Hints for lepton flavour universality violation observed in charged and neutral current processes in B-physics

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+} \tau \nu)}{\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)},$$

 $\ell = \mu, e$

3.1 σ excess in R_D and R_{D*} combination [1909.12524]

$$R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}$$

3.1 σ excess in R_K [LHCb: 2103.11769]

+ tensions in angular observables and BRs

3.9σ global significance of NP in b→sµµ [2104.05631]

- The size of the anomalies suggest a treelevel mediator, such as leptoquarks (LQ)
- Two scalar or a single vector LQ(s) could explain the LFU anomalies
 - LQ decays into *flavour-diagonal* and *cross-generational* final states

Leptoquark production and decay

Pair production

large QCD production cross section only depends on m_{LQ} resonant LQs

Single production

cross section $\propto \lambda^2$ sensitive to higher m_{LQ} for sufficiently high λ

Off-shell production

cross section $\propto \lambda^4$ non-resonant sensitive to very high m_{LQ} for sufficiently high λ

- Couplings determined by the parameter $\lambda \circ \text{via Yukawa interaction}$
- Also single LQ resonant production: although PDF for leptons inside the proton minuscule, compensated by resonant enhancement
- Simplified search strategy targeting certain final states from LQ decays at ATLAS
 - **up** (Q=2/3e) or **down** (Q=-1/3e) type LQs
- Thorough search for pair production of scalar LQs
- Re-interpretations based on vector LQs ongoing

LQ decay	B=1	B=0
LQ_{up}	bτ	tν
LQ _{down}	t $oldsymbol{ au}$	bν

ex.: 3rd generation flavour-diagonal scalar LQ

Scalar LQ state of the art

- Searches for leptoquarks cover a large variety of scenarios
- Here focusing on scalar leptoquark pair production

Latest ATLAS LQ pair production results

- Dedicated and complementary searches targeting B=0, 0.5 or 1
- LQ simulation at **NLO QCD** with **MadGraph5_aMC@NLO + Pythia8**
- LQ cross-section calculations equivalent to pair-produced top squarks
 - Approximate NNLO QCD + NNLL accuracy

		u/d/s c	b	t			
	e	JHI	EP 10 (2020) 112	Eur. Phys. J. C 81 (2021) 313			
B=1	μ	*not	covered today	*not covered today			
	τ	-	JHEP o6 (2019) 144 (36 fb ⁻¹) *not covered today	<u>JHEP 06 (2021) 179</u> tτtτ			
В=о	ν	-	<u>JHEP 05 (2021) 093</u> bvbv	Eur. Phys. J. C 80 (2020) 737 *not covered today			
B=0.5	τ/ν	-	2108.07665 [accepted by PRD] tτbν				

Latest ATLAS LQ pair production results

ATL-PHYS-PUB-2021-017

LQLQ → tτtτ: analysis strategy

- First dedicated ATLAS search
- $1\ell + \ge 1\tau_{had}$ or $\ge 2\ell$
- ≥2 jets; ≥1 bjet
- Single and dilepton triggers

- Tighter light lepton isolation and identification in multilepton (2lSS/3l) regions to reduce contribution from non-prompt l background
- Large variety of background contributions in each SR
- $\mathbf{M}_{\mathbf{eff}}$ (= Σ (jet,e, μ , τ) p_T + MET) as discriminating variable in SRs

Number of e/µ

- * used for tt correction
- ** used for fake τ_{had} correction

LQLQ → tτtτ: results

- Simultaneous fit of 7 SRs and 15 CRs
- Main systematic uncertainties from:
 - au identification and energy scale calibration, $t\bar{t}$ modelling
- Sensitivity dominated by 1ℓ+≥1τ channel
- Statistically-limited search at high masses
- No significant excess over the SM background observed

Events / 100 GeV Events / 100 Ge\ ATLAS LQ₃ (1.1 TeV) LQd (1.1 TeV **ATLAS** Fake τ_{had} $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Single top $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $t\bar{t}(Z/\gamma^*)$ (high) $t\bar{t}H$ 1*ℓ*+1*τSS* $1\ell + \geq 2\tau$ Diboson Non-prompt e $t\bar{t}(Z/\gamma^*)$ (high) Post-Fit Post-Fit Non-prompt μ QMisID Non-prompt e Uncertainty μ QMisID Uncertainty ---- Pre-Fit $1\ell + 1\tau SS$ $\ell+\geq 2\tau$ 10-10- 10^{-2} 10^{-2} Data / Bkg Data / Bkg 1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 $m_{\rm eff} \, [{\rm GeV}]$ $m_{\rm eff}$ [GeV]

 m_{LO} < 1.43 TeV (1.22 TeV) excluded for B=1 (B=0.5)

LQLQ → tτbν / tνbτ: analysis strategy

- MET trigger and offline MET > 280 GeV
- $1\tau_{had}$, no light leptons, ≥ 2 bjets
- Dedicated CRs and VRs for main backgrounds: $t\bar{t}$ (1 real au) and single top
 - Large impact of single top vs tī interference modelling in measured single top normalisation correction

2108.07665 [accepted by PRD]

LQLQ \rightarrow t τ b ν / t ν b τ : results

- Strongest limits
 on pair produced 3rd generation
 scalar LQs for
 B=0.5 (tτ/bν)
- First
 interpretation
 for vector LQs in
 ATLAS!

LQLQ → bvbv

- Reinterpretation from search for pair-produced bb
 decaying into a b-quark and a stable neutralino (01)
- SRA: optimised for large $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$
- SRB: optimised for $50 < \Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 200 \text{ GeV}$
- SRC: optimised for $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 50 \text{ GeV}$
- Take best limits from SRA+SRB or SRC for leptoquark interpretation

 $m_{LQ} < 1.26 \text{ TeV} (0.4 \text{ TeV}) \text{ excluded for B=0 (B=0.95)}$

Towards combination

- Overlaying the LQ₃d limits from $t\tau t\tau$, $t\tau b\nu$ and $b\nu b\nu$ results and LQ₃d limits from $b\tau t\nu$ and $t\nu t\nu$ results
 - LQ_3d : covering the full phase space with 3 complementary analyses
 - Next step: COMBINATION!

ATL-PHYS-PUB-2021-017

Single LQ production

- First ATLAS single LQ production limits last Summer!
 - Assume LQ couples to eu and μc
 - LQ couplings of $g^{eu}_{1R} = g^{\mu c}_{1R} > 0.46$ newly excluded for $m_{LQ} > 1420$ GeV up to $g^{eu}_{1R} = g^{\mu c}_{1R} = 1$ for $m_{LQ} = 1880$ GeV

$$H_{\rm P} \equiv |\vec{p}_{\rm T}^e| + |\vec{p}_{\rm T}^{\mu}| + |\vec{p}_{\rm T}^{j_1}|$$

expect more singly-produced LQ in $e^+\mu^-$ than $e^-\mu^+$

Conclusions

- Latest findings from searches for leptoquarks with the ATLAS experiment
- Stringent limits set on scalar leptoquarks with flavour-diagonal and cross-generational couplings

• Just the start!

- Many more scenarios to be covered (vector LQ, single LQ, s-channel and off-shell production)
- Object improvements to be further exploited
- All these searches are statistically limited → LHC expected to further improve sensitivity with increasing luminosity!

Final goal: explore the full phase-space

... and discover new physics!

Run: 280231

Event: 912117525

2015-09-24 09:18:55 CEST

LQLQ→µjµj data event candidate

If BSM... how to explain it?

EFT analysis

Interpret data based on effective Lagrangian

Simplified model

- Which mediator could explain these tensions?
- UV completion models including new mediator → extra new particles

EFT analysis (I)

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_i C_i \mathcal{O}_i$$

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{\alpha}{4\pi} \sum_i C_i O_i \qquad \begin{array}{c} O_9^{\mu} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\mu} \gamma^{\mu} \mu) \\ O_{10}^{\mu} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\mu} \gamma^{\mu} \gamma_5 \mu) \end{array}$$

$$O_9^{\mu} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\mu} \gamma^{\mu} \mu)$$

$$O_{10}^{\mu} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\mu} \gamma^{\mu} \gamma_5 \mu)$$

$$\sim \frac{1}{(3 \text{ TeV})^2}$$
$$3_q \to 2_q 3_\ell 3_\ell$$

$$\sim \frac{1}{(40 \text{ TeV})^2}$$

$$3_q \rightarrow 2_q 2_\ell 2_\ell$$

Taken together, they point out to a well-defined structure of NP coupled mainly to 3rd generation, with a flavour structure connected to that appearing in the SM Yukawa couplings

$$\sim \frac{1}{(1 \text{ TeV})^2} |V_q|$$

[1909.02519]

$$\sim \frac{1}{(1 \text{ TeV})^2} |V_q| |V_{\ell}|^2$$

Food-for-thought: connection to the hierarchy problem?

EFT analysis (II)

EFT analysis

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_i C_i \mathcal{O}_i$$

$$O_9^{\mu} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\mu} \gamma^{\mu} \mu)$$

$$O_{10}^{\mu} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\mu} \gamma^{\mu} \gamma_5 \mu)$$

$$\sim \frac{1}{(3 \text{ TeV})^2}$$

 $3_a \rightarrow 2_a 3_\ell 3_\ell$

$$\sim \frac{1}{(40 \text{ TeV})^2}$$

Taken together, they point out to a well-defined structure of NP coupled mainly to 3rd generation, with a flavour structure connected to that appearing in the SM

Yukawa couplings

Positive feedback between anomalies! Improved fit to b→sℓℓ

Additionally... muon g-2

- Recent confirmation by Fermilab of the Brookhaven experimental result
 - Strong evidence of new physics: **4.2σ** (Fermilab + Brookhaven combo) *if using* as benchmark the data-driven (R-ratio) SM calculation

[Muon g-2 collaboration, 2104.03281]

• If the S_1 coupling to RH fermions is allowed, also a solution to $(g-2)_\mu$ is possible

SM prediction dominated by QED, but SM error dominated by QCD

Hadrons

[Borsanyi et al., 2002.12347]

ATLAS LQ search strategy

- Simplified search strategy targeting certain final states from LQ decays
 - Extended Buchmüller, Rückl, Wyler (BRW) model [Phys. Lett. B 191 (1987) 442]
 - **up** (Q=2/3e) or **down** (Q=-1/3e) type LQs
- Searches for pair production of scalar LQs (LQ_{up/down})
 - More model independent than vector LQ
 - Can be a pseudo-Nambu Goldstone boson (where the Higgs boson would also be included as a pNGB)
- Re-interpretations based on **vector LQs (LQ_V)** ongoing
 - Same charge and decay mode as LQ_{up}
 - **Minimal-coupling (MC):** LQ couples to SM gauge bosons through covariant derivative
 - Yang-Mills (YM): LQ is massive gauge boson with additional couplings to SM gauge bosons
- Comparison of cross-sections (3rd generation):
 - $\sigma_{YM}(LQ_V) \sim 5\sigma_{MC}(LQ_V) \sim 20\sigma(LQ_{up/down})$ for m(LQ)=1.5 TeV

ex.: 3rd generation flavour-diagonal scalar LQ

LQ decay	B=1	B=0
LQ _{up}	bτ	t u
LQ _{down}	tτ	bν

Other b→s µ+µ- probes

> Branching fractions of $b \rightarrow s\mu^+\mu^-$ decays

- \circ Multiple measurements are below SM predictions at low dilepton mass squared (q^2)
- SM predictions suffer from large hadronic uncertainties

► Angular analyses: $B^+ \to K^{*+} \mu^+ \mu^-$

 \circ Combined tension with SM at 3.1 sigma when floating $Re(C_9)$

Phys. Rev. Lett. 126 (2021) 161802

> Angular analyses: $B^0 \to K^{*0} \mu^+ \mu^-$

- Large number of observables offering complementary information on NP
- SM uncertainties smaller than for BFs

Harry Cliff, LHC seminar

- Combined tension between latest LHCb analysis and SM at 3.3 sigma when floating $Re(C_9)$
- Extent of hadronic contributions still matter of debate

\succ Branching fraction of $B^0_{(s)} \to \mu^+\mu^-$ decays

Cross-sections LQ pair vs s-channel

LQ pair production

<u> </u>			T.T	V C4- "
LQ mass		$\sigma_{NNLO+NNLL}$		K-Tactor
GeV	[pb]	[pb]	%	
500	4.19E-01	6.09E-01	7.53	1.24
600	1.66E-01	2.05E-01	8.12	1.23
700	6.33E-01	7.83E-02	8.80	1.24
800	2.63E-02	3.26E-02	9.53	1.24
850	1.74E-02	2.16E-02	9.93	1.24
900	1.16E-02	1.45E-02	10.33	1.25
950	7.96E-03	9.91E-03	10.76	1.24
1000	5.46E-03	6.83E-03	11.20	1.25
1050	3.79E-03	4.76E-03	11.65	1.26
1100	2.66E-03	3.35E-03	12.12	1.26
1150	1.88E-03	2.38E-03	12.62	1.27
1200	1.35E-03	1.70E-03	13.13	1.26
1250	9.67E-04	1.22E-03	13.66	1.26
1300	6.99E-04	8.87E-04	14.21	1.27
1350	5.06E-04	6.46E-04	14.78	1.28
1400	3.69E-04	4.73E-04	15.37	1.28
1450	2.70E-04	3.48E-04	15.99	1.29
1500	2.01E-04	2.57E-04	16.63	1.28
1550	1.47E-04	1.91E-04	17.28	1.30
1600	1.10E-04	1.42E-04	17.96	1.29

resonant s-channel production

$m_{ m LQ}[{ m TeV}]$	Partons	$\sigma_{\mathrm{S}^{1/3}}$ [pb]	$\sigma_{\mathrm{S}^{5/3}}$ [pb]
	u + e	$(1.45 \times 10^{-1})^{+3.1\%}_{-3.7\%} \pm 1.8\%$	$(1.58 \times 10^{-1})^{+2.9\%}_{-3.4\%} \pm 1.8\%$
	$u + \mu$	$(1.39 \times 10^{-1})^{+3.1\%}_{-3.8\%} \pm 1.9\%$	$(1.52 \times 10^{-1})^{+2.9\%} + 1.8\%$
0.9	$u + \tau$	$(1.11 \times 10^{-1})_{-4.0\%}^{+3.6\%} \pm 2.0\%$	$(1.23 \times 10^{-1})_{-3.6\%}^{+3.4\%} \pm 2.0\%$
	c + e	$ \frac{(1.32 \times 10^{-2})^{+4.2\%}_{-5.1\%} \pm 12.1\%}{(1.29 \times 10^{-2})^{+4.3\%}_{-5.2\%} \pm 12.0\%} $	$ \begin{array}{c} (1.44 \times 10^{-2})^{+3.9\%}_{-4.7\%} \pm 12.2\% \\ (1.40 \times 10^{-2})^{+3.9\%}_{-4.8\%} \pm 12.0\% \end{array} $
	$c + \mu$	$(1.29 \times 10^{-2})^{+4.3\%}_{-5.2\%} \pm 12.0\%$	$\left[(1.40 \times 10^{-2})^{+3.9\%}_{-4.8\%} \pm 12.0\% \right]$
	$c + \tau$	$(1.01 \times 10^{-2})^{+4.6\%}_{-5.5\%} \pm 12.2\%$	$(1.12 \times 10^{-2})_{-5.0\%}^{+4.1\%} \pm 12.2\%$
	u + e	$(1.40 \times 10^{-2})^{+2.8\%}_{-3.3\%} \pm 2.0\%$	$(1.49 \times 10^{-2})^{+2.7\%}_{-3.1\%} \pm 2.0\%$
	$u + \mu$	$(1.36 \times 10^{-2})^{+2.9\%}_{-3.4\%} \pm 2.0\%$	$(1.46 \times 10^{-2})_{-3.1\%}^{+2.7\%} \pm 2.0\%$
1.6	$u + \tau$	$(1.11 \times 10^{-2})_{-3.5\%}^{+3.3\%} \pm 2.2\%$	$(1.20 \times 10^{-2})^{+2.9\%}_{-3.2\%} \pm 2.2\%$
	c + e	$(7.31 \times 10^{-4})^{+3.8\%}_{-4.4\%} \pm 24.2\%$	$(7.80 \times 10^{-4})^{+3.6\%}_{-4.1\%} \pm 24.3\%$
	$c + \mu$	$(7.16 \times 10^{-4})^{+3.8\%}_{-4.4\%} \pm 24.0\%$	$(7.65 \times 10^{-4})^{+3.6\%}_{-4.1\%} \pm 24.1\%$
	$c + \tau$	$(5.78 \times 10^{-4})_{-4.7\%}^{+4.1\%} \pm 24.2\%$	$\left[(6.28 \times 10^{-4})^{+3.8\%}_{-4.3\%} \pm 24.3\% \right]$
	u + e	$(1.53 \times 10^{-3})^{+2.6\%}_{-3.0\%} \pm 2.4\%$	$ \begin{array}{c} (1.61 \times 10^{-3})^{+2.5\%}_{-2.8\%} \pm 2.4\% \\ (1.59 \times 10^{-3})^{+2.5\%}_{-2.9\%} \pm 2.4\% \\ (1.33 \times 10^{-3})^{+2.6\%}_{-3.0\%} \pm 2.5\% \end{array} $
	$u + \mu$	$(1.50 \times 10^{-3})^{+2.6\%}_{-3.0\%} \pm 2.4\%$	$(1.59 \times 10^{-3})_{-2.9\%}^{+2.5\%} \pm 2.4\%$
2.5	$u + \tau$	$(1.25 \times 10^{-3})^{+2.9\%}_{-3.2\%} \pm 2.5\%$	$(1.33 \times 10^{-3})_{-3.0\%}^{+2.6\%} \pm 2.5\%$
	c + e	$(5.52 \times 10^{-5})^{+3.3\%}_{-3.8\%} \pm 41.9\%$	$(5.83 \times 10^{-5})_{-3.6\%}^{+3.1\%} \pm 42.1\%$
	$c + \mu$	$(5.43 \times 10^{-5})_{-3.8\%}^{+3.3\%} \pm 41.8\%$	$(5.74 \times 10^{-5})_{-3.6\%}^{+3.2\%} \pm 41.9\%$
	$c + \tau$	$(4.48 \times 10^{-5})_{-4.0\%}^{+3.5\%} \pm 42.0\%$	$(4.79 \times 10^{-5})_{-3.8\%}^{+3.3\%} \pm 42.1\%$
	u + e	$(7.21 \times 10^{-5})^{+2.3\%}_{-2.6\%} \pm 3.1\%$	$(7.49 \times 10^{-5})^{+2.2\%}_{-2.5\%} \pm 3.0\%$
	$u + \mu$	$(7.14 \times 10^{-5})^{+2.3\%}_{-2.6\%} \pm 3.1\%$	$(7.42 \times 10^{-5})^{+2.2\%}_{-2.5\%} \pm 3.1\%$
4.0	$u + \tau$	$(6.02 \times 10^{-5})_{-2.7\%}^{+2.4\%} \pm 3.2\%$	$(6.30 \times 10^{-5})^{+2.3\%}_{-2.6\%} \pm 3.2\%$
	c + e	$(2.35 \times 10^{-6})^{+2.6\%}_{-3.0\%} \pm 63.0\%$	$(2.45 \times 10^{-6})^{+2.6\%}_{-2.9\%} \pm 63.1\%$
	$c + \mu$	$(2.33 \times 10^{-6})^{+2.7\%}_{-3.0\%} \pm 62.9\%$	$(2.42 \times 10^{-6})^{+2.6\%}_{-2.9\%} \pm 63.1\%$
	$c + \tau$	$ \begin{array}{c} (2.33 \times 10^{-6})^{+2.7\%}_{-3.0\%} \pm 62.9\% \\ (1.96 \times 10^{-6})^{+2.8\%}_{-3.1\%} \pm 63.1\% \end{array} $	$ \begin{array}{c} (2.42 \times 10^{-6})^{+2.6\%}_{-2.9\%} \pm 63.1\% \\ (2.05 \times 10^{-6})^{+2.7\%}_{-3.0\%} \pm 63.2\% \end{array} $

Table 1. Inclusive cross sections in **pb** for the resonant leptoquark production from up-type quarks, $pp \to LQ$ + charge-conjugated process, as a function of the leptoquark mass m_{LQ} at $\sqrt{s}=13\,\text{TeV}$. The cross section $\sigma_{S^{1/3}}$ ($\sigma_{S^{5/3}}$) corresponds to the resonant production of scalar LQ with absolute electric charge 1/3 (5/3) when the associated Yukawa coupling strength is set to one, $y_{q\ell}=1$. The second column denotes which quark-lepton pair couples to the corresponding leptoquark. First (second) uncertainty is due to the renormalisation and factorisation scale variations (PDF replicas), and is given in per cent units. See Section 3 for details.

[1607.07741] [2012.02092]

Leptoquarks and quantum numbers

Table	e 116.1:	Possible	leptoquark	s and th	eir quantum numbers	. (P	DG 2019)
Spin	3B + L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling	_	
0	-2	3	1	1/3	$\bar{q}_L^c \ell_L \text{ or } \bar{u}_R^c e_R$	\overline{S}_{1}	
0	-2	$\bar{3}$	1	4/3		$ ilde{S}_{_{1}}$	
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c \ell_L$	S_3	Types of LQs according
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$	$V_{_2}$	to Buchmüller, Rückl, Wyler
1	-2	$\bar{3}$	2	-1/6	$\bar{u}_R^c \gamma^\mu \ell_L$	$ ilde{V_2}$	(BRW) model
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$	R_{2}	
0	0	3	2	1/6	$\bar{d}_R\ell_L$	\tilde{R}_{2}	
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$	$U_{_1}$	
1	0	3	1	5/3	$\bar{u}_R \gamma^\mu e_R$	$ ilde{U}_{\scriptscriptstyle 1}$	
1	0	3	3	2/3	$ar{q}_L \gamma^\mu \ell_L$	U_3	

LQ simulation & uncertainties

- Simulation at NLO QCD with MadGraph5_aMC@NLO + Pythia8
 - ME-PS matching done with CKKW-L prescription with matching scale = $1/4 * m_{LQ}$
 - Narrow-decay-width approximation: 0.2% of m_{LQ} (on-shell production dominates)
- Samples with LQ mass between [400-2000] GeV
 - 50 GeV mass intervals within [800-1600] GeV, 100 GeV otherwise
 - additional dedicated $\beta=1$ samples
- Signal cross-section calculations equivalent to pair-produced top squarks (both massive, coloured, scalar particles with the same production modes)
 - Approximate NNLO QCD + NNLL accuracy
 - For LQ masses [400-2000] GeV, the cross-sections are [2.1 pb 0.02 fb]
 - Renormalisation and factorisation scale uncertainties: 7-22% for LQ masses [400-2000] GeV

Acceptance and efficiency uncertainties

- Modelling of initial- and final-state radiation
- Renormalisation and factorisation scale variations
- PDF uncertainties

Vector LQs

[1512.01560]

$$\mathcal{L}_{U} = -\frac{1}{2} U_{\mu\nu}^{\dagger} U^{\mu\nu} + M_{U}^{2} U_{\mu}^{\dagger} U_{\mu} + \mathcal{L}_{an}$$
(4.1)

where

$$U_{\mu\nu} = D_{\nu}U_{\mu} - D_{\nu}U_{\mu}$$
 $D_{\mu} \equiv \partial_{\mu} - ig_s \frac{\lambda^a}{2} G_{\mu}^a - ig' \frac{2}{3} B_{\mu},$ (4.2)

and

$$\mathcal{L}_{an} = -ig_s k_s (U_{\mu}^{\dagger} \frac{\lambda^a}{2} U_{\nu}) G^{\mu\nu^a} - ig' \frac{2}{3} k_Y U_{\mu}^{\dagger} U_{\nu} B^{\mu\nu}$$
(4.3)

LQ bounds and B-anomalies

CMS summary LQ

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

LQLQ → bvbv

Variable		SRA	CRzA	$ VR_{A1}^{m_{CT}} $	$VR_{A1}^{m_{bb}}$	$ VR_{A2}^{m_{CT}} $	$VR_{A2}^{m_{bb}}$
Number of baseline leptons		0 2 0					
Number of high-purity leptons		_	2 SFOS		-	_	
$p_{\mathrm{T}}(\ell_1)$	[GeV]	_	> 27		-	_	
$p_{\mathrm{T}}(\ell_2)$	[GeV]	_	> 20		-	_	
$m_{\mathrm{T}}(\ell,\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	[GeV]	_	> 20		-	_	
$m_{\ell\ell}$	[GeV]	_	[81, 101]		-	_	
Number of jets				€	[2, 4]		
Number of <i>b</i> -tagged jets					2		
j_1 and j_2 b-tagged					✓		
$p_{\mathrm{T}}(j_1)$	[GeV]			>	150		
$p_{ m T}(j_2)$	[GeV]			>	> 50		
$p_{ m T}(j_4)$	[GeV]			<	< 50		
$\min[\Delta\phi(\mathrm{jet}_{1-4},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})]$	[rad]			>	0.4		
$E_{ m T}^{ m miss} \ ilde{E}_{ m T}^{ m miss}$	[GeV]	> 250	< 100		> 2	250	
$ ilde{E}_{ ext{T}}^{ ext{miss}}$	[GeV]	- > 250 -					
$E_{ m T}^{ m miss}/m_{ m eff}$		> 0.25 -					
$E_{ m T}^{ m miss}/m_{ m eff} \ ilde{E}_{ m T}^{ m miss}/m_{ m eff}$		- > 0.25					
m_{bb}	[GeV]	> 200 < 200 > 200 < 200 > 200				> 200	
$m_{\rm CT}$	[GeV]	> 250 > 250 [150, 250] > 250 [150, 250]			[150, 250]		
$m_{ m eff}$	[GeV]	>	500	[500,	1500]	>	1500

Variable		SRB	CRzB VRzB
Number of baseline leptons		0	2
Number of high-purity leptons		_	2 SFOS
$p_{\mathrm{T}}(\ell_1)$	[GeV]	_	> 27
$p_{ m T}(\ell_2)$	[GeV]	_	> 20
$m_{\ell\ell}$	[GeV]	_	[76, 106]
$m_{\mathrm{T}}(\ell,\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	[GeV]	_	> 20
Number of jets			∈ [2,4]
Number of <i>b</i> -tagged jets			2
$p_{\mathrm{T}}(j_1)$	[GeV]		> 100
$p_{ m T}(j_2)$	[GeV]		> 50
$\min[\Delta\phi(\mathrm{jet}_{1-4},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})]$	[rad]		> 0.4
j_1 not b -tagged		_	✓ –
$E_{ m T}^{ m miss}$	[GeV]	> 250	< 100
$ ilde{E}_{ m T}^{ m miss}$	[GeV]	_	> 250
$m_{\rm CT}$	[GeV]		< 250
WXGB		> 0.85	[0.3, 0.63] > 0.63

Variable		SRC-2b	SRC-1b1v	SRC-0b1v	VRC-2b	VRC-1b1v	VRC-0b1v
Number of jets				€	[2, 5]		
j_1 not b -tagged					✓		
Number of baseline leptons					0		
Number of b-tagged jets		≥ 2	1	0	≥ 2	1	0
$N_{ m vtx}$		≥ 0	≥ 1	≥ 1	≥ 0	≥ 1	≥ 1
$m_{ m vtx}$	[GeV]	_	> 0.6	> 1.5	_	> 0.6	> 1.5
$p_{ m T}^{ m vtx}$	[GeV]	_	> 3	> 5	_	> 3	> 5
$p_{\mathrm{T}}(j_1)$	[GeV]	> 500	> 400	> 400	< 500	> 400	> 400
$E_{ m T}^{ m miss}$	[GeV]	> 500	> 400	> 400	< 500	> 400	> 400
$H_{\mathrm{T;3}}$	[GeV]	_	< 80	< 80	_	< 80	< 80
${\mathcal A}$		> 0.80	> 0.86	_	[0.8, 0.9]	> 0.86	-
m_{jj}	[GeV]	> 250	> 250	_	[150, 250]	> 250	-
$\Delta\phi(j_1,b_1)$	[rad]	_	> 2.2	_	_	< 2.2	-
$\Delta \phi(j_1, \text{vtx})$	[rad]	_	_	> 2.2	_	_	< 2.2
$ \eta_{ m vtx} $		_	< 1.2	< 1.2	_	> 1.2	> 1.2

Single LQ production

Search for LQ LQ → tτtτ

JHEP 06 (2021) 179

Signal regions

1ℓ+≥1τ channel

- Split into: $1\ell+1\tau$ OS, $1\ell+1\tau$ SS, $1\ell+\geq 2\tau$
- Signal regions with additional cuts on p_T^{τ} , E_T^{miss} , $m_{\ell\tau}$, m_{eff} , $m_T(\ell,E_T^{miss})$ and $m_{\tau\tau}$
- Dominant background: $t\bar{t}$ with real (1 ℓ +1 τ OS) or fake (1 ℓ +1 τ SS, 1 ℓ + \geq 2 τ) τ and/or ℓ

2ℓOS+≥1τ channel

- Split into: $2\ell OS + 1\tau$, $2\ell OS + \ge 2\tau$
- Signal regions with additional cuts on p_T^{τ} , $m_{\ell\tau}^{min}$, $m_{\tau\tau}$, $m_{\ell\ell}$
- Dominant background: $t\bar{t}$ with fake τ and/or ℓ , $t\bar{t}W$, $t\bar{t}Z/\gamma^*$, $t\bar{t}H$

• $2\ell SS/3\ell + \geq 1\tau$ channel

- Split into: SR-H ($p_{T,1}^{\tau}$ ≥ 225 GeV), SR-L (125 ≤ $p_{T,1}^{\tau}$ < 225 GeV)
- Dominant background: tt̄W, tt̄Z/γ*, tt̄H, VV
- Acceptance x efficiency = 10% in the combination of all SRs

Background estimation (I)

- Large variety of background contributions in each SR
- All backgrounds from MC simulation, datadriven corrections applied for some of them
- $t\bar{t}$: background contributes with real or fake ℓ/τ
 - N_{jets} and m_{eff} correction: derived in $OSe\mu+0\tau$ for $t\bar{t}+Wt$
 - Systematic variation: correction derived in $1\ell+1\tau$ channel
- Fake τ correction: derived in OSe μ + $\geq 1\tau$ with $m_{eff} < 1000$ GeV
 - Parametrised in p_T^{τ} , and number of associated tracks (1 or 3 prongs)
 - Systematic variation: estimate from
 Z+jets CR OSee/μμ+≥1τ

Background estimation (II)

- Corrections derived simultaneously in final fit
 - 3 normalisation factors (λ) for fake ℓ correction (non-prompt HF electrons and muons, and material conversions + misidentified-charge electrons)
 - 2 λ for ttW and internal conversions (γ^* →ℓℓ with m_{ℓℓ} < 1 GeV)
- Possible thanks to the **dedicated CRs in 2\ellSS+0\tau and 3\ell+0\tau**
 - H_T^{lep} fitted in non-prompt HF ℓ and $t\bar{t}W$, $t\bar{t}Z$, and VV CRs
 - Event yields used in material and internal conversions CRs

LQ LQ → tτtτ (I)

	1 <i>ℓ</i> +1 <i>τ</i> OS			1ℓ+1 τ SS			1 <i>ℓ</i> +≥2 <i>τ</i>		
	CR	VR	SR	CR	VR	SR	CR	VR	SR
e/μ selection		T			T			T	
$N_{ au_{ m had}}$		1			1			≥ 2	
$ au_{ m had}~{ m ID}$		Medium			Medium			Loose	
$\ell au_{ m had}$ charge		OS			SS			_	
$p_{\mathrm{T},1}^{\tau}$ [GeV]	≥ 50	50 - 150	≥ 150	≥ 50	50 - 150	≥ 150	≥ 50	50 - 100	≥ 100
$p_{\mathrm{T},1}^{ au} [\mathrm{GeV}] \ p_{\mathrm{T},2}^{ au} [\mathrm{GeV}]$		_			_		≥ 25	25 - 50	≥ 50
$N_{\rm jets}$		≥ 4			≥ 3			≥ 2	
$N_{\text{b-jets}}$	≥ 2	\geq 2	l	≥ 2	\geq	1	≥ 2	≥]	l
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	_	≥ 8	0	_		≥ 50		_	
$m_{\ell\tau}$ [GeV]	_	≥ 20	00			≥ 200			
$m_{\rm eff}$ [GeV]	< 800	≥ 80	00	< 800	≥ 80	00	< 800	≥ 80	00
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$ [GeV]	_		_		≥ 100		_		
$m_{\tau\tau}$ [GeV]					_		_	≥ 10	00

		$2\ell OS+1\tau$					
	CR^Z	$CR^{t\bar{t}}$	VR	SR	VR	SR	
e/μ selection			T		'	T	
e/μ combinations	ее/µµ еµ ее/µµ ее/µµ/еµ					$\mu/e\mu$	
$N_{ au_{ m had}}$	1					2	
$ au_{ m had}~{ m ID}$	Loose/N	Loose/Medium Medium				Loose	
$p_{\mathrm{T},1}^{\tau}$ [GeV]	≥ 25	≥ 25	25-150	≥ 150	≥ 25	≥ 75	
$m_{\ell\tau}^{\rm min}$ [GeV]	_	_	< 100	≥ 100	_	≥ 50	
$m_{\tau\tau}$ [GeV]					<100	≥ 100	
$m_{\rm eff}$ [GeV]	_	< 1000			_	_	
Z veto	Inverted Yes Yes Yes				Y	'es	
$m_{\ell\ell}$ [GeV]		>	12				

		000100					
	2	$2\ell SS/3\ell + \geq 1\tau$					
	VR	SR-L	SR-H				
e/μ selection		T* (2\ell SS)					
		$T*/T(3\ell)$					
$N_{ au_{ m had}}$		≥ 1					
$ au_{ m had}$ ID		Loose					
$p_{\mathrm{T},1}^{\tau}$ [GeV]	25–125	125–225	≥ 225				
Z veto		Yes					
$m_{\ell\ell}$ [GeV]		> 12					

LQ LQ → tτtτ (II)

			2ℓSS+0τ		
	$2\ell tt(e)\pm$	$2\ell \operatorname{tt}(\mu) \pm$	2ℓttW±	2ℓIntC	2ℓMatC
e/μ selection			T*		
e/μ combination	ee/µe	μμ/еμ	ее/µµ/еµ/µе	eeleµlµe	eeleµlµe
Electron internal conversion veto	Yes	Yes	Yes	Inverted	Yes
Electron material conversion veto	Yes	Yes	Yes	Yes	Inverted
$N_{ m jets}$	2–3	2–3	≥ 4	≥ 2	≥ 2
Z veto			Yes		
m_{ee} [GeV]			≥ 12		

			3ℓ+0τ	
	3ℓVV	3ℓttZ	3ℓIntC	3ℓMatC
e/μ selection	T	T	$T(\ell_0)$, $T^*(\ell_1 \text{ and } \ell_2)$	$T(\ell_0), T^*(\ell_1 \text{ and } \ell_2)$
Electron internal conversion veto	Yes	Yes	Inverted(ℓ_1 or ℓ_2)	$\operatorname{Yes}(\ell_1 \text{ or } \ell_2)$
Electron material conversion veto	Yes	Yes	$\operatorname{Yes}(\ell_1 \text{ and } \ell_2)$	Inverted(ℓ_1 or ℓ_2)
$N_{ m jets}$	2–3	≥ 4	≥ 2	≥ 2
Z veto	Inverted	Inverted	Yes	Yes
$m_{\ell\ell}$ [GeV]			≥ 12	

Multilepton channel

- isolation to reject non-prompt leptons based on:
 - lepton and overlapping track jets properties
 - lepton track/ calorimeter isolation variables

multivariate lepton identification to reject misidentified charge electrons

 The resulting electron candidates are further split into three classes:
 "Material Conversion," "Internal Conversion," and "Very Tight."

electron CO selection	CO radius	m _{track-track}	
(1) material CO	> 20 mm	< 100 MeV (wrt. CV)	
(2) internal CO	not (1)	< 100 MeV (wrt. PV)	
(3) very tight	not (1) and not (2)		

Systematic uncertainties tτtτ

• tt̄

- Similar modelling uncertainties as in tltl analysis
- N_{jets} and m_{eff} correction: slight difference in slope when derived in the $1\ell+1\tau$ channel
- Fake τ correction: alternative estimate from Z+jets CR OSee/ $\mu\mu$ + $\geq 1\tau$ with $|m_{\ell\ell} m_Z| < 10$ GeV
- Fake & correction: relaxing lepton criteria to enrich samples in different types of fake
- Internal and material conversions: 25% extrapolation uncertainty derived in Z→μμγ*(→ee) VR
- t̄W, t̄Z/γ*, t̄H: modelling uncertainties from comparing to alternative generators

Nevertheless, the analysis is statistically-limited

Results (I)

- Simultaneous fit of 7 SRs and 15 CRs
- Main systematic uncertainties from:
 - τ identification and energy scale calibration, $t\bar{t}$ modelling
- Sensitivity dominated by 1ℓ+≥1
 τ channel
- Statistically-limited search at high masses
- No significant excess over the SM background observed

$1\ell+1\tau SS$

$1\ell+\geq 2\tau$

2**ℓOS+1**τ

$2\ell SS/3\ell + \geq 1\tau$

Results (II)

- Upper limits set on the LQ pair production cross-section at 95% CL
 - $m_{LQ} < 1.43 \text{ TeV} (1.22 \text{ TeV}) \text{ excluded for B=1 (B=0.5)}$

