Searches for new physics with leptons using the ATLAS detector

Monika Wielers (STFC – Rutherford Appleton Laboratory) On behalf of the ATLAS collaboration

Why we like leptons

'Easy' to identify objects with very good detector resolution

Monika Wielers (RAL)

Overview

Selection of more recent exotics searches with leptons in the final state

- Direct searches
 - ₩' search
 - Type III SeeSaw heavy leptons
- Indirect searches
 - Multilepton general
 - Lepton flavour violation in Z decays
 - bsll contact interactions
- Searches reported in other talks
 - Vector Like Quarks Angela Burger
 - Searches for leptoquarks with the ATLAS detector Tamara Vasquez-Schroeder

More papers and conference notes to be found in <u>ATLAS exotics results page</u>

- Previous search for W'→ev or W'→µv complemented now with W'→τv using complete Run 2 dataset
- Look at 1 hadronic τ + E_T^{miss} final state
- * Main backgrounds: $W \rightarrow \tau v$, QCD jets
- Results

 SSM W' masses excluded up to 6.0 (5.8) TeV observed (excluded) in e and μ channels combined

Type III SeeSaw Heavy Leptons

- ATLAS-CONF-2021-023 Eur. Phys. J. C 81 (2021) 218
- Charged and neutral heavy leptons predicted by Type-III SeeSaw models
- Heavy leptons decay in leptons (ν, e/μ) + W, Z or H bosons
- 2 leptons in final state

3 or 4 lepton final state

Type III SeeSaw Heavy Leptons

2 leptons

 10^{2}

400

500

- Classification in OS and SS ee, μμ, eμ
- Main backgrounds: VV, $t\bar{t}$

ATLAS Preliminary

Limits at 95% CL

600

700

800

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Obs. limit 2 lep Obs. limit 3 + 4 lep

Exp. limit $\pm 1\sigma$ Exp. limit $\pm 2\sigma$ Type-III seesaw $B(N^0, L^{\pm} \rightarrow e, \mu, \tau) = 1/3$

900

--- Exp. limit 2 + 3 + 4 lep Obs. limit 2 + 3 + 4 lep

1000

1100 1200

m(N,L[±]) [GeV]

3 or 4 leptons

- Classification in 3 or 4 lepton final states
- Main backgrounds: VV, rare top

Note: measurement statistics limited

Observed (expected) exclusion limits at 95% CL $m(L,N) > 910 (960^{+90}_{-80}) \text{ GeV}$

6

ATLAS-CONF-2021-023

Eur. Phys. J. C 81 (2021) 218

General multilepton search

- Model-independent search for BSM in 3 or 4 lepton (e or μ) events
 - Wide range of scenarios where BSM might be hidden
- Signal regions classified according to # leptons, lepton pairs compatible with Z boson, E_T^{miss}
- Main backgrounds: VV and VVV, top, QCD

Region	Particles	$E_{\mathrm{T}}^{\mathrm{miss}}$	Z-pairs	Other
			Sig	gnal regions
3ℓ	3ℓ	< 50 GeV	1	veto event if $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 80$ GeV for off-Z ℓ
	31	> 50 GeV	1	veto event if $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 80$ GeV for off-Z ℓ
	3ℓ	< 50 GeV	0	veto event if $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 40$ GeV for off-flavour ℓ
	3ℓ	> 50 GeV	0	veto event if $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 40$ GeV for off-flavour ℓ
	3l SRs are a	livided into m	inv ranges	of 0-200, 200-400, 400-600 and >600 GeV.
4ℓ	4ℓ	< 50 GeV	1	-
	4ℓ	> 50 GeV	1	-
	4ℓ	_	0	-
	4	Al SRs are div	vided in m _{ir}	$_{\rm W}$ ranges of 0-400 and >400 GeV.

W*+

General multilepton search

* Can use results to interpret $H^{\pm \pm}$ production and Type III SeeSaw

Type-III SeeSaw

- Expected 95% CL cross-section upper limit (for 3I final state) is 41 (12) fb for m_L= 400 (700) GeV
- Only a bit weaker than dedicated Run 2 analysis using dilepton final state (σ upper limit of 22^{+8.5}_{-6.4} (7.5^{+3.1}_{-1.8}) fb for m_L=400 (700) GeV)

Eur. Phys. J. C 81 (2021) 218

$* \mathsf{H}^{\pm\,\pm}$

- expected 95% CL cross-section upper limit 0.16^{+0.14}_{-0.07} fb for m(H) = 300 GeV and 0.14^{+0.13}_{-0.07} fb for m(H)= 500 GeV
- Comparable to results from dedicated search using 2015+2016 data Eur. Phys. J. C 78 (2018) 199
- General search provides similar sensitivity as exclusive searches published previously

12/01/2022

Lepton Flavour Violation in Z decays

LHC is factory of direct Z boson production and allows to look for LFV during its decay

- Solution The set of the set
- Deviation would indicate new physics beyond Standard Model (BSM)
- * Analysis done using $e\mu$, $e\tau$ and $\mu\tau$ final states
- Search strategy in eµ channel
 - Fit peak in m(l') invariant mass distribution
 - Signal optimisation and background rejection using BDT
 - Solution Set in the matrix of the set of the set
 - Measurement precision dominated by statistical uncertainties
- As no deviations are observed

Observed (expected) limit at 95% CL: BR(Z→e μ) < 3.04 (2.75) × 10⁻⁷

- € 2000 C ATLAS Preliminary 1800 √s=13 TeV, 139 fb Data **Total Background** $7 \rightarrow \tau \tau$ Z→µµ 20 Remaining Background 1000 Signal at limit × 20 800 600 400 200 Data / Fit 90 105 70 75 80 85 95 100 110 m_{eu} [GeV]
- Limit improved by factor of ~3 w.r.t. ATLAS result from Run 1!

12/01/2022

Lepton Flavour Violation in Z decays

- * Search strategy in τe and $\tau \mu$ channels with τ decaying leptonically
 - Signal optimisation and background rejection using deep neural network
 - $\boldsymbol{*}$ For better sensitivity, distinguish regions with low and high p_{T} of subleading lepton
 - Solution NN trained individually on Z→ $\tau\tau$, top-quark pair and diboson background
 - Main background: lepton Z→ττ, smaller background: Z→ ℓℓ (with 1 fake lepton), top, VV and Higgs production
- Observed limit (unpolarised τ's)

12/01/2022

- BR(Z \rightarrow e τ) < 7.0 \times 10⁻⁶ at 95% CL
- * BR(Z $\rightarrow \mu\tau$) < 7.2 × 10⁻⁶ at 95% CL
- Combination of results with combined Run 1 + Run 2 results using hadronic τ decays (at 95% CL: BR(Z→eτ) < 8.1 × 10⁻⁶, BR(Z→μτ) < 9.5 × 10⁻⁶)

BR(Z $\to e\tau$) < 5.0 × 10⁻⁶ at 95% CL BR(Z $\to \mu\tau$) < 6.5 × 10⁻⁶ at 95% CL

Search for bs# contact interactions

- Search motivated by hints LFU violated in rare B meson decays, BSM could appear between initial b and final state s-quark interactions
 - Search for asymmetry in bsee vs bsμμ as direct probe for new physics
- Look at events with 2 SF OS electrons or muons and 0 or 1 b-jets
- Main backgrounds: Z/γ +jets, jets, $t\bar{t}$, Vt, $t\bar{t}V$
- Results

Observed limits at 95% CL: $\Lambda/g_* > 2.0$ (2.4) TeV in electron (muon) channel for model independent bs $\ell\ell$ EFT model

Summary

- No evidence yet for new physics looking at multitude of final states many of which include leptons
- Limits constantly improving thanks to increased statistics and more sophisticated analysis techniques with many Run 2 results still to come
- Run 3 will start this spring with collisions at $\sqrt{s} = 13.6 \text{ TeV}!$
 - This will push limits even further and hopefully allows to catch the first glimpse of BSM physics

