

On behalf of the CMS collaboration

A flavor for leptoquarks

Ben Kilminster University of Zürich

Jan.12, 2022 LP2021 Manchester

Theoretical puzzle : Similarity of quarks and leptons

Some underlying symmetry ?

Theoretical Puzzle : flavor

- WHY three generations of identical particles
- HOW do they get different masses ?

Puzzle : $(g-2)_{\mu}$

Long-standing discrepancy of anomalous magnetic moment of muon

4.2 σ discrepancy

New theory June 2020, <u>Phys. Rept. 887 (2020) 1-166</u> New experiment April 2021 <u>PRL 126, 141801 (2021)</u>

 $a\mu \equiv (g - 2)\mu/2$

Theory : 116 59 1810(43) x 10^{-12} Experiment : 116 59 2061(41) x 10^{-12} 4.2 σ discrepancy

Experimental puzzles : flavor anomalies in B decays

BSM explanations ?

New heavy mediators Lepton flavor universality violation New left-handed currents

Leptoquarks !

Leptoquarks

Scalar or vector boson

- Decay into ℓq
 ⇒ carry L, B, color
- Coupling LQ- ℓ -q : $\lambda_{\ell q}$

7

• Fractional charge

Flavor anomalies as explained by LQ

Vector LQ left-handed currents ٠

> signs for destructive interference with SM in B \rightarrow Kµµ decay

Leptoquarks in $(g-2)_{\mu}$

(For example : <u>2104.02982</u>, <u>2105.08670</u>, <u>2108.10055</u>, <u>2110.03707</u>, <u>2104.11229</u>, <u>2104.03341</u>, <u>2008.02643</u>)

Can we search for leptoquarks directly ?

LQ production at the LHC (example for 3rd Gen)

Leptoquark searches at CMS

Single LQ		
1 st	2 nd	3 rd
ej + e	μj + μ	τb + τ tv+τ/tτ+v
With full Run 2 data 137 fb ⁻¹		

1st Generation LQs LQLQ pair \rightarrow eq + eq, eq + vj

Selection :

electron trigger

(1) 2 high-Pt electrons with MET (missing transverse energy)

2 high-Pt (>50 GeV) jets

No jet-flavor requirements

Construct LQ candidates which minimize $| M(LQ_1) - M(LQ_2) |$

35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 10^{8} 10⁸ 10^{8} → Data Z/γ* + jets - Data Σ/γ* + jets CMS CMS 107 - Data 107 CMS $\frac{1}{2}Z/\gamma^*$ + jets 10^{7} u 10⁶ iq 10⁵ att Other background Multijet Stat⊕syst uncertainty $m_{LQ} = 650 \text{ GeV}, \beta = 1.0$ $m_{LQ} = 1200 \text{ GeV}, \beta = 1.0$ Events / pin 10⁶ 10⁴ 10² 10² 10² Ther background Events / bin 10⁴ 10⁵ 10⁵ 10⁵ 10⁵ 777 tī Multijet $M_{LQ} = 650 \text{ GeV}, \beta = 1.0$ $m_{LQ} = 1200 \text{ GeV}, \beta = 1.0$ Öther background Multijet Events / I 10⁴ 10^{3} Stat⊕syst uncertainty $m_{LQ} = 650 \text{ GeV}, \beta = 1.0$ $m_{LQ} = 1200 \text{ GeV}, \beta = 1.0$ 10² 10 10 10 10 data / bkg. data / bkg. 0^E 500 1000 1500 10 2500 3000 500 1000 1500 2000 $m_{ m ee}$ [GeV] $S_{\rm T} = p_{\rm T}({\rm e}_1) + p_{\rm T}({\rm e}_2) + p_{\rm T}({\rm j}_1) + p_{\rm T}({\rm j}_2)$ [GeV] data / bkg. 0 0 35.9 fb⁻¹ (13 TeV) 500 1000 1500 10⁶ 🔶 Data m_{ei}^{min} [GeV] CMS X/γ* + jets ¹0⁵ 🛛 tī Events / bin Multijet 10 Other background 35.9 fb⁻¹ (13 TeV) 0^3 2000 Stat⊕syst uncertainty Threshold [GeV] CMS 1800 LQ signal, $\beta = 1.0$ 02 eeii 1600 *-*+*S*_⊤ 1400 → m^{mir}ei 1200 - m_e 1000 10-800 600 data / bkg. 400 0 200 500 1000 1500 2000 $m_{\rm LQ}\,[{ m GeV}]$ Ž00 400 600 800 1000 1200 1400 1600 1800 2000 $m_{\rm LO}$ [GeV] Counting experiment (correlated bins) Cuts optimized for LQ mass

The eejj final state : 3 distributions used in counting experiment

Phys. Rev. D 99, 052002 (2019)

1 st Generation LQs : LQLQ \rightarrow eq + eq, eq + vq

β defines branching fractions of LQ

 $\beta=1$ LQ \rightarrow eq only

 $\beta=0$ LQ \rightarrow vq only

 β =0.5 LQ \rightarrow eq and LQ \rightarrow vq (same)

eejj+evjj: Combo improves ~ β =0.5 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) $\sigma \times \beta^2 \, [pb]$ ∞ Scalar LQLQ → eeii CMS 0.9⊢ CMS Expected 95% CL upper limit eν 0.8 Observed 95% CL upper limit 10^{-1} 95% CL limits $\sigma_{\text{theory}} \times \beta^2$, ($\beta = 1$) 0.7 ---- eeji (Exp.) eejį (Obs.) 0.6 10⁻² ---- evij (Exp.) 0.5 evii (Obs.) 0.4 eejį + evjį (Exp.) 10⁻³ eejj + evjj (Obs.) 0.3 0.2⊨ 10^{-4} 0.1⊢ 200 1000 1200 1400 1600 1800 2000 600 400 1000 1200 1400 1600 400 800 600 800 200 $m_{\rm LQ}$ [GeV] $m_{\rm LO}$ [GeV]

2nd Generation LQs (same strategy as 1st gen LQ)

Phys. Rev. D 99, 032014 (2019)

Eur. Phys. J. C 80 (2020) 3

With 137

fb⁻¹

 3^{rd} Generation LQs: LQ \rightarrow bv + bv, tv + tv

Interpretation of top & bottom squark searches with 137 fb⁻¹

Considering 25% of LQLQ decays (Not considering τ decays)

Considering events with jets + significant missing transverse energy

$$M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\text{miss}X(1)} + \vec{p}_{\text{T}}^{\text{miss}X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)}\right) \right]$$

Eur. Phys. J. C 80 (2020) 3

With 137 fb⁻¹

Provides strongest constraints on scalar and vector leptoquarks through pair production

 For 1st, 2nd, 3rd generation leptoquarks

	LQS	$LQ_V, \kappa = 1$	$LQ_V, \kappa = 0$
	mass [GeV]	mass [GeV]	mass [GeV]
$LQ \rightarrow q\nu (q = u, d, s, or c)$	1140	1980	1560
LQ ightarrow b u	1185	1925	1560
LQ ightarrow t u	1140	1825	1475
$LQ \rightarrow \begin{cases} t\nu \ (\mathcal{B} = 50\%) \\ b\tau \ (\mathcal{B} = 50\%) \end{cases}$	—	1550	1225

Upper limits on Single 3rd generation LQ production \rightarrow b τ

Democratic decays to 3rd generation LQs LQ_V ζ^{tv} 50% τb 50% $LQ_{S} \begin{pmatrix} t\tau & 50\% \\ bv & 50\% \end{pmatrix}$ (From theory : 1808.02063) (From theory : 1706.07808) LQ_V LQ_V In Pairs : LQ_S LQ_S tvτb **Final states** tvτ t LQ LQ_S Singly : V b b Т ν

Final state $tv\tau(b)$ – all-hadronic final state

Top reconstruction

Signal efficiency for singly produced leptoquarks

- Cross-section scales with LQ-I-q coupling λ^2 , but kinematics also affected
- At high λ , efficiency of selection decreases with mass due to low-mass off-shell events

Vector, k = 0 Minimal coupling

Search for Z' mediators with LFUV

Ratio of $Z' \rightarrow \mu\mu / Z' \rightarrow ee$ probes different couplings to ee and $\mu\mu$

Summary of CMS searches for leptoquarks

- Leptoquarks are motivated theoretically and experimentally
- CMS has directly searched for all 3 generations of leptoquarks
 - Several analyses updated to 137 fb⁻¹
- For 3rd-generation searches
 - Dedicated searches for leading models explaining flavor anomalies
 - Scalar & vector leptoquarks
 - LQ→tν, bν, tτ, bτ
 - Pair production and single production
 - Probing up to LQ masses of ~ 1.5 2 TeV region
- Several new results with full Run-2 dataset in the works, stay tuned !

BACKUPS

Acknowledgements

 Izaak Neutelings (at UZH) produced the nice latex Feynman diagrams & figures

Yang-Mills couplings with leptoquarks

• Z.Phys. C76 (1997) 137-153: <u>arXiv:hep-ph/9610408</u>, "Leptoquark Pair Production in Hadronic Interactions"

