Searches for supersymmetry in hadronic final states with the CMS experiment

Jon S. Wilson
Baylor University
Lepton Photon 2021
11 January 2022
SUSY has many variations and final states
- Low mass stop, charginos, or neutralinos well motivated
- Decay cascades often have top, W, Z, H
- Large branching ratios to jets
- Hadronic final states have good statistics
 - Backgrounds challenging, but surmountable
- Complementary to lepton final states, small backgrounds but small rates
- Focus today on Run 2 searches in hadronic final states for:
 - Stop squarks
 - Charginos or neutralinos
 - Higgsinos
Many models of stop production

With R-parity conserved, LSP is stable, stop decays to LSP + SM particles

LSP invisible in CMS—missing p_T

Final state determined by Δm (mass difference between stop and LSP)

For the model shown on the left:

- Top + LSP when $\Delta m > m(t)$
- $Wb + LSP$ when $\Delta m > m(W) + m(b)$
- Compressed region when $\Delta m < m(W) + m(b)$—many final states
- Top corridor at $\Delta m \sim m(\text{top})$: signal very similar to SM

Generally missing p_T, lots of jets

- How much missing p_T depends on Δm
Search for R-parity conserving stops in missing $p_T +$ jets

Many improvements over previous searches

Require zero charged leptons, many jets, large missing p_T

Cover all Δm except top corridor

Many final states have multiple tops, W bosons, b jets

Deep NN top, W taggers give sensitivity to different models

 Resolved+merged top taggers cover wide range of top p_T

Also use combination of low-p_T and high-p_T b taggers
Major backgrounds, data-driven methods:

- “Lost lepton”: SM backgrounds like $t\bar{t}$, $W + \text{jets}$ that produce a lepton but it is not reconstructed
- $Z + \text{jets}$ with $Z \rightarrow \nu\bar{\nu}$
- QCD multijet

For each major background, define a control region enriched in that background, depleted of signal

Use Monte Carlo to extrapolate control region data to search region

Many search bins, based on number of tagged objects (b, t, W), number of jets, H_T, missing p_T, and others

Some search bins more sensitive to low Δm models (upper plot), others to high Δm (lower plot)

Only about half the 183 search bins shown here

No excess of data above the SM prediction
Set limits on signal cross sections as function of sparticle masses
- Top corridor not considered
- Only one model shown here, for high Δm
- Exclude parameter space where experimental cross section limit smaller than theoretical cross section
- Stop masses up to 1310 GeV excluded, depending on LSP mass
- Improvement over previous analyses (~ 200 GeV extension of excluded region) comes from
 - Additional data
 - Use of top and W taggers
 - Re-optimized search bins

![Graph showing CMS exclusion limits on stop mass and chargino mass](image)
Electroweakino searches

▶ Even if squarks too massive, still expect charginos/neutralinos at ~ 1 TeV
▶ Search for chargino-neutralino or chargino pair
▶ Assume:
 ▶ R-parity conserved
 ▶ LSP is lightest neutralino, bino-like
 ▶ Lightest chargino is NLSP and is wino-like
 ▶ In chargino-neutralino production, second lightest neutralino is mass-degenerate with lightest chargino and is wino-like
▶ Decay to WW, WZ, or WH plus two LSPs
▶ Hadronic decay of W, Z, H
▶ Lots of jets and missing p_T
▶ Try to identify boson decays using NNs
Electroweakino searches

WW, WZ, WH: CMS-PAS-SUS-21-002

- Select events with missing p_T, at least two large-radius jets ("AK8"), and 2–6 normal-radius jets ("AK4")
- Intend to capture decay products of bosons in one AK8 jet each
- Employ three taggers for AK8 jets:
 - W tagger targets W decays
 - V tagger (upper figure) targets Z or W decays
 - $b\bar{b}$ tagger (lower figure) targets H or $Z \rightarrow b\bar{b}$
- Also use AK4 jet b tagger
- Many possible combinations of taggers
- Some used as search regions, others as control or validation regions
- Highest-level division based on AK4 b tagger
- *b* veto region requires zero AK4 *b* tags
- Sensitive to WW and WZ, but not WH
- Use W tagger and V tagger to define search region
- Backgrounds are events with zero or only one boson, called “0-res” and “1-res”, plus rare events (e.g. triboson)
- 0-res and 1-res background estimates derived from control regions
- Control regions defined by vetoing W and V tags in various combinations
- Search region binned in missing p_T
- No excess in data above expected backgrounds
- b tag search region requires at least one AK4 b tag
- Sensitive to WH and to WZ
- Use W tagger and $b\bar{b}$ tagger to define search regions
- Background from top production becomes important here
- Use tagger veto to define control regions, and also use events with one charged lepton for more control regions
- Lepton control regions constrain top backgrounds, tag-veto control regions constrain 0-res backgrounds
No excess observed above expected SM backgrounds

Establish 95% CL limits on all considered models as functions of LSP and NLSP masses

Showing limits combining chargino pair and chargino-neutralino production, assuming NLSP neutralino decays to Z or to H

For very light LSP, NLSP masses up to 870 (960) GeV are excluded for the Z (H) case
Search for higgsino pair production

Two Higgs bosons decaying to $b\bar{b}$, plus missing p_T

Divide search according to H boson p_T
 - low p_T: resolved b jets (AK4 b jets)
 - high p_T: merged $b\bar{b}$ AK8 jet

H boson p_T determined by mass splitting between higgsino and daughter sparticle (Goldstino or lightest neutralino)

Select events with missing p_T, zero charged leptons and jets:
 - low p_T: 4 or 5 AK4 jets
 - high p_T: 2 AK8 jets

Apply b-tagging algorithms to AK4 and AK8 jets

Attempt to reconstruct two H boson candidates
Split events according to H boson p_T, missing p_T, number of reconstructed candidates, and (for low p_T case) largest dijet separation

- Estimate backgrounds using control regions and simulation
- Low p_T backgrounds dominated by top pair production
- High p_T backgrounds dominated by QCD and top
- No more than modest excess in one or two bins
- Set 95% CL limits
- For electroweak production (left), no exclusion possible
- For gauge-mediated model (upper right), higgsino masses between 175 and 1025 GeV excluded
- For strong production of gluino pairs (lower right), exclude higgsino masses below 2330 GeV
- Strongest constraints on higgsino production from CMS to date
Hadronic stop search extends stop exclusion by $\sim 200 \text{ GeV}$

Chargino/neutralino search most sensitive to date for boosted phase space, uses deep NN taggers

Higgsino pair search combines resolved and boosted phase spaces, obtains strong constraints on gauge-mediated models and gluino production models

Hadronic final states are a critical part of the hunt for SUSY
- stop mass vs LSP mass figure taken from arXiv:1407.0583
- All-hadronic stop search: PRD 104 052001 (2021)
- WW, WZ, WH: CMS-PAS-SUS-21-002
- Di-Higgs plus MET: CMS-PAS-SUS-20-004
Jon S. Wilson (BU)
Approx. NNLO+NNLL exclusion

95% CL upper limit on cross section [pb]
Approx. NNLO+NNLL exclusion

- Observed ± 1 \(\sigma_{\text{theory}} \)
- Expected ± 1, 2 \(\sigma_{\text{experiment}} \)

 CMS hadronic SUSY

\(m_{\tilde{g}} \) [GeV] vs. \(m_{\tilde{\chi}_1^0} \) [GeV]

Jon S. Wilson (BU)
CMS

137.0 fb\(^{-1}\) (13 TeV)

pp → \tilde{g} \tilde{g}, \tilde{g} → \tilde{t} \tilde{t}, \tilde{t} → c \tilde{\chi}_1^0

Approx. NNLO+NNLL exclusion

- Observed ± 1 \sigma_{\text{theory}}
- Expected ± 1, 2 \sigma_{\text{experiment}}

95% CL upper limit on cross section [pb]