# Scintillating sampling ECAL technology for the Upgrade II of LHCb

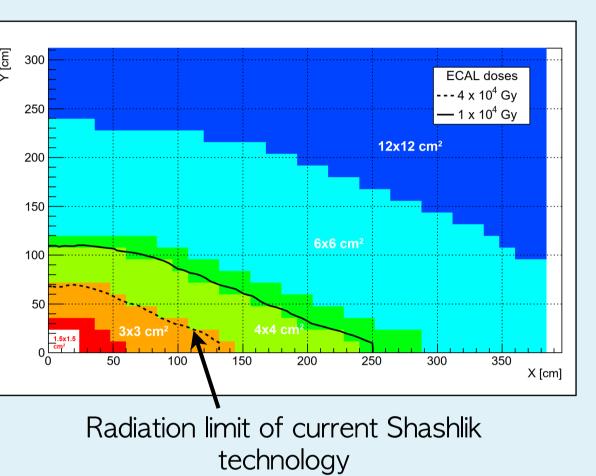


Federico Betti<sup>1</sup>, on behalf of the LHCb ECAL Upgrade II R&D Group

The 30th International Symposium on Lepton Photon Interactions at High Energies — Manchester, 10th January 2022

1CERN, Geneva, Switzerland



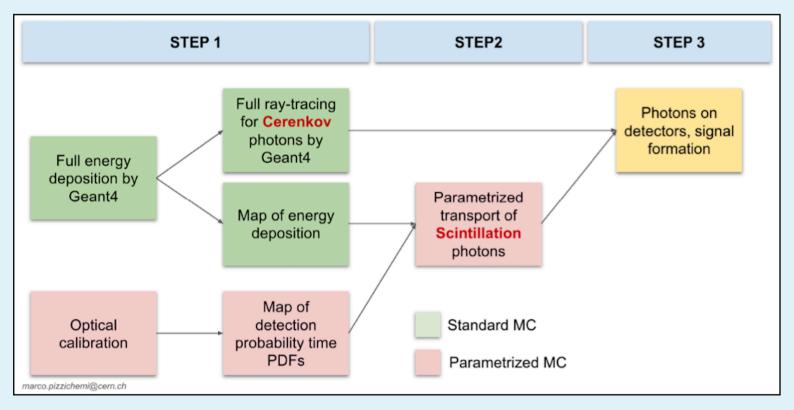



#### **Motivations**

Expected luminosity during **Upgrade II** at LHCb:  $\mathcal{L} = 1 - 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 

→ New requirements on the electromagnetic

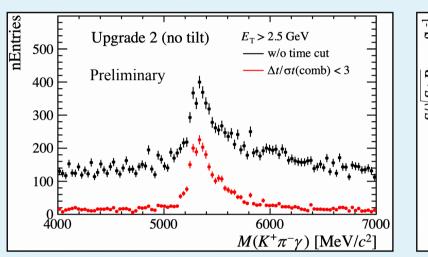
- Sustain up to 1 MGy in the innermost region
- Mitigate pile-up with high **granularity** and  $\mathcal{O}(10)$  ps precision timing capabilities
- Keep the current **energy** resolution  $\sigma(E)/E \simeq 10 \% / \sqrt{E} \oplus 1 \%$

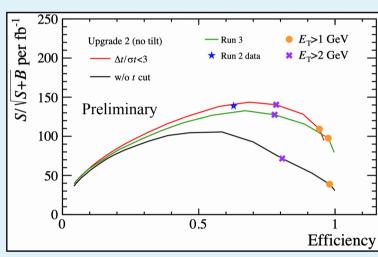


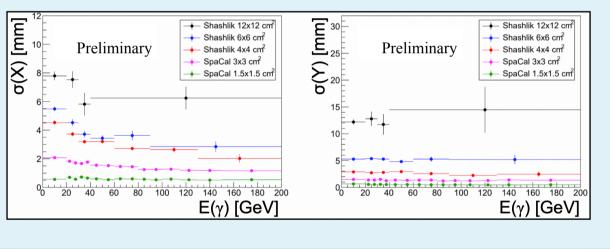

Shashlik

to isolate front and back sections

### **Simulation**


- Geant4 simulation of energy deposit
- Parameterised ray-tracing transport of scintillation photons and photodetector
- photodetector response
- Particle flux from the LHCb simulation used as input for physics studies





| Region | Module type   | Cell size        | Segmentation          | $R_M  \sigma_E/E = A/\sqrt{E} \oplus B$ |
|--------|---------------|------------------|-----------------------|-----------------------------------------|
|        |               | $[{ m cm}^2]$    | $[\mathrm{mm}]/[X_0]$ | [mm] A/B $[%]$                          |
| 1      | SpaCal W/GAGG | $1.5 \times 1.5$ | 45+105 / 7+18         | 14.5 9.1 / 1.4                          |
| 2      | SpaCal Pb/PS  | $3.0 \times 3.0$ | 80+210 / 7+18         | 29.5 MC $10.4 / 0.6$                    |
| 3      | Shashlik      | $4.0 \times 4.0$ | Continuous fibres     | 35.0 $10.0 / 1.0$                       |
| 4      | Shashlik      | $6.0 \times 6.0$ | Continuous fibres     | 35.0 Design 10.0 / 1.0                  |
| 5      | Shashlik      | $12.0\times12.0$ | Continuous fibres     | 35.0 <b>goal</b> $10.0 / 1.0$           |

## Physics studies

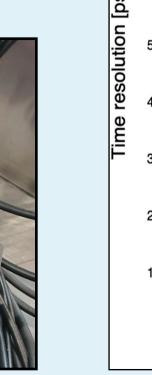
- Study of  $B^0 \to K^{*0} \gamma$
- Large combinatorial background suppressed with **timing cut** on photon candidate
- Photon position resolution  $\simeq 0.5$  mm ( $\simeq 1.5$  mm) for SPACAL-W (SPACAL-Pb) and 2-15 mm for Shashlik [2]

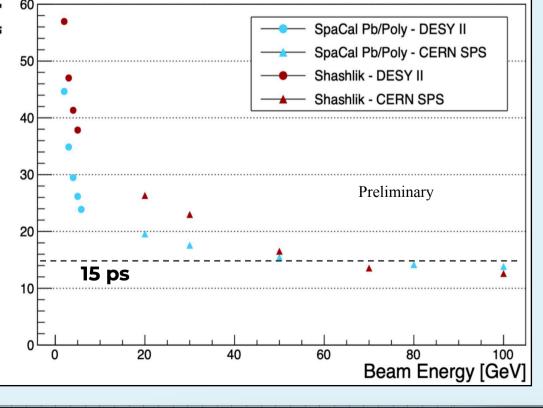






# Spaghetti Calorimeter (SPACAL)


- Innermost region with 1.5 cm cells with scintillating garnet crystal [1] fibres and W absorber (1 MGy area)
- Inner region with 3 cm cells scintillating **plastic** fibres and **Pb** absorber (200 kGy area)
- Longitudinal segmentation and double-sided readout
- mitigate radiation effect
- → improve reconstruction
- → allow for an optional **timing layer** in the shower maximum


# Test beam campaigns

- Several prototypes tested with electron beams at **DESY II** and **CERN** SPS
- **Energy** resolution [2]:
- ⇒ Best with incidence angles  $\theta_x, \theta_y \ge 3^\circ$ , close to  $\sigma(E)/E \simeq 10 \% / \sqrt{E} \oplus 1 \%$
- → Good agreement with simulation
- **Time** resolution [2]:
- → SPACAL slightly better than Shashlik at energies below 50 GeV
- → Above 50 GeV all prototypes reach  $\sigma(t) \simeq 15 \text{ ps}$

Pb/Poly

W/GAGG





#### **Shashlik Calorimeter**

- Used for current ECAL (in regions with 4, 6 and 12 cm cells)
- 4 mm scintillating **plastic** and 2 mm **lead** absorber tiles with wavelength shifting (WLS) fibers
- Will be used for periphery of ECAL ( < 40 kRad)</li>
- Will be upgraded with:
- **→ Double-sided** readout
- ⇒ Better PMTs with smaller time transit spread
- → WLS fibres with **faster** decay time (KURARAY YS-4)