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Anatomy of a high-energy collision

Colliders study fundamental interactions at high energy

?
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hard
process

Hard + branchings
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theory uncertainties
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needs modelling
model-dependent
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Anatomy of a high-energy collision

Colliders study fundamental interactions at high energy

jet

?

1 GeV 10 GeV 100 GeV 1 TeV scale

hard
processquark/gluon branchings

hadrons
(π, K, p, n, ...)

Hard + branchings
perturbative QCD
controlled, solid
predictive with genuine
theory uncertainties

Hadronisation
NON-perturbative
needs modelling
model-dependent

branchings mostly collinear
(i.e. at small angles)

⇓

“high-energy parton”
→ collimated shower of

particles ≡ JET

Jet ≡ proxy to hard parton
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40 years of jets for collider phenomenology

Central idea

Jet ≡ proxy for hard parton
⇒ carries info about the hard collision

Ubiquitous at the LHC
used in more than 60% of the analyses

Reconstructions of jets from particles
using dedicated jet algorithms

2 main ways to see jets:

QCD branchings ↔ recombination algorithms

Energy flow ↔ cone algorithms

Calculable in perturbative QCD
(NLO standard, sometimes NNLO)

Jet cross-section at the LHC
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Plan

Jets are used routinely across the whole LHC physics spectrum

(IMHO) Fun/novelties are related to jet substructure
(although this has also become mostly mainstream)

⇒ this talk focuses on jet substructure
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New prospects at the LHC

Instead of using jets as “monolithic” objects

look at their internal dynamics

JET
SUBSTRUCTURE

tagging
boosted
objects

Pileup
mitigation

Monte-Carlo
generators

Heavy-ion
collisions

QCD
precision
pheno

machine
learning
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A decade of substructure tools

(modified)
MassDrop
Tagger

(recursive)

SoftDrop
Trimming

Pruning

Shower
deconstructn

JH Top
tagger

HEP Top
tagger

(generalised)

angularities

N-subjettiness

Energy
Correlation
Functions

Energy flow
Polynomials

Jet Pull

* Non-exhaustive/biased/... list

tree of QCD branchings flow of energy
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Main idea of the talk:
focus on a single “view” of a jet

use it to show applications in each field

Gregory Soyez Jets and their substructure Lepton-Photon 2022 7 / 26



Frequent tool: Cambridge/Aachen (de-)clustering

Cambridge/Aachen: iteratively recombine the closest pair

Idea: this tree structure mimics the partonic branching cascade
E.g.: conceptually the largest-energy (pt or z) branch ≡ emissions from the “leading parton”
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Boosted objects

pt ≲ m pt ≫ m

.

.

W/Z/H

je
t

jet

.

.

W/Z/H

je
t

jet

.

.

W/Z/H

je
t

2 jets 1 jet

(massive) objects produced boosted (energy ≫ mass) are seen as 1 jet:

θqq̄ ∼ m

pt
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use substructure to separate from QCD jets
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Other examples

What jet do we have here?

a quark?

a gluon?

a W /Z (or a Higgs)?

a top quark?

Goal: properly identify the hard process
⇒ Many applications, e.g. relevant to new physics searches
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(modified) Mass-Drop Tagger, Soft-Drop

Idea: look for hard branchings

Rare hard branchings for q/g → q/g + g (P(z) ∼ 1/z)

Frequent hard branchings for W /Z/H → qq̄ (P(z) ∼ 1) + less radiation at large angles
Method: search the first splitting with z > zcut (+ constrain large-angle radiation)
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Searches and measurements
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Understanding substructure tools

Breakthrough 7-9 years ago: jet substructure tools are calculable
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For QCDists: boosted ⇒ pt ≫ m ⇒ all-orders resummation of αn
s log

n(ptR/m).
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Precision physics

LHC measurements v. NLL+NLO and NNLL+LO predictions:

CMS-PAS-SMP-16-010
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See also
[arXiv:2109.03340] for a

recent CMS
measurement

Interesting question: Precise observable, limited NP effects ⇒ can we extract αs?
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Visualising the sustructure with the Lund plane

[F.Dreyer,G.Salam,GS,18]
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Measured by ATLAS + compared to QCD analytics

[ATLAS, CERN-EP-2020-030]
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New prospects at the LHC

Instead of using jets as “monolithic” objects

look at their internal dynamics

JET
SUBSTRUCTUREtagging

boosted
objects

Pileup
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generators

Heavy-ion
collisions

QCD
precision
pheno

machine
learning
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Jet quenching and substructure

Idea: interaction with the quark-gluon plasma

the quark-gluon plasma affects QCD radiation ⇒ study through jet substructure
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Recent measurement by the Alice collaboration

Lots of recent activity (experimentally, theoretically, phenomenologically, ...)
Just one example here: energy fraction and splitting angle of a hard splitting in the jet
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Substructure for MC development

Main idea: MC generators simulate QCD dynamics, substructure probes QCD dynamics

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
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Substructure for MC development

Main idea: MC generators simulate QCD dynamics, substructure probes QCD dynamics

direct comparison
between data and MC

observables for
MC accuracy
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Beyond the “pure QCD interest”: better MCs ⇒ less modelling uncert. ⇒ improved searches
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New prospects at the LHC

Instead of using jets as “monolithic” objects

look at their internal dynamics
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The Machine-Learning revolution

Deep Learning is now almost everywhere in
high-energy physics

substructure among pioneers (≳5 years ago)

Most typical example: boosted jet tagging:
discriminate “signal” from “background” jets
W/Z/H/t v. QCD; q v. g , ...

Huge list of studies beyond this

applications beyond boosted tagging
different inputs (observables, 4-vectors,
images, ...)
different architectures

some attempts to understand what goes on in
the black box
e.g. assess uncertainties, hints of IRC safety, understand

what is learned, analytic insight
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Conclusions & perspectives

Take-home messages

Jets are everywhere at colliders (from before LEP to after LHC)

Substructure is now mainstream and is here to stay
Window on searches for new physics
Useful tool to learn about QCD

Wide range of applications (Taggers, pQCD, HI, MC, ML)

Looking torwards the future

Jet substructure has often been a playground for new ideas

Expect more analyses with boosted jets

Hope for more (unfolded) substructure measerements

Stay tuned for more deep-learning applications

More? See these lecture notes (arXiv:1901.10342) and BOOST (2020, 2021) talks
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