

Theory perspective on the Flavour Anomalies

Danny van Dyk

Technische Universität München

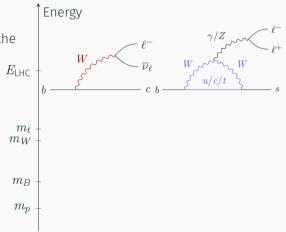
Lepton Photon 2021 January 10th, 2022

Overview

Contents

- this is <u>not</u> a comprehensive discussion of the flavour anomalies (substantial tensions shy of 5 σ individually)
 - ► aiming for an overview of a subjective selection of flavour anomalies
 - ▶ <u>off the menu</u>:
 - $(g-2)_{\mu}$ see following talks by M. Lancaster & A. El-Khadra
 - ▶ Cabibbo anomaly, ...
 - ► provide an idea of current status of and complexity behind the flavour anomalies
- concentrating on longstanding b anomalies

 $b
ightarrow c au^- \overline{
u}\,$ driven by BaBar '12 & LHCb '15&'18 measurements

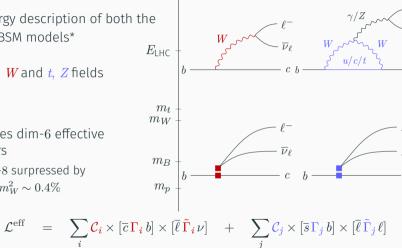

 $b
ightarrow s \mu^+ \mu^-\,$ driven by LHCb '13...'21 analyses (& consistent with ATLAS, Belle, CMS)

- after overviews by L. Grillo and me: more in-depth discussions Tuesday afternoon and Wednesday morning
 - semileptonic decays at LHCb
 rare decays with Belle II
 probing LFU violation with LHCb measurements
 first semileptonic measurements at Belle II
 F. Bernlochner

- ▶ theory predictions for *b* decays require an elaborate framework
- multiscale problem: m_t , $m_W \gg m_b \gg \Lambda_{had}$
- "divide and conquer" approach:
 - introduce weak effective theory (WET), separating high-energy scale m_t , m_W from low-energy scales m_b , Λ_{had}
 - use renormalization group equations to understand WET at low scale $\simeq m_b$
 - \blacktriangleright WET simplifies hadronic matrix elements, compute at low scale $\simeq m_b$
 - ► from lattice QCD (if possible)
 - in power expansion of A_{had}/m_b using heavy-quark effective theory (HQET) and/or soft-collinear effective theory (SCET)
 - in QCD sum rules: Shifman-Vainshtein-Zakharov sum rules (SVZSR) for and more importantly light-cone QCD sum rules (LCSR)

Framework — Weak Effective Theory

- low-energy description of both the SM and BSM models*
- removes W and t, Z fields


*: under weak assumption that BSM physics "lives" at or above the electroweak scale

Framework — Weak Effective Theory

 \blacktriangleright removes W and t, Z fields

- ► introduces dim-6 effective operators
 - ► dim-8 surpressed by $m_{\rm h}^2/m_W^2 \sim 0.4\%$

Energy

*: under weak assumption that BSM physics "lives" at or above the electroweak scale

Framework – Operator Bases

 $b \to c \tau^- \overline{\nu}$

▶ 10 operators for $\ell = \tau$ flavour

 $[\overline{s}\,\Gamma_i\,b] \times [\overline{\ell}\,\widetilde{\Gamma}_i\,\nu]$ $O_{V_L}: \gamma^{\mu}P_L \otimes \gamma_{\mu}P_L$

- reduces to 5 if left-handed neutrinos assumed
 - very manageable in fits

 $b\to s\mu^+\mu^-$

- ▶ 10 $b \rightarrow s \mu \mu$ operators
 - $[\overline{s}\,\Gamma_j\,b] \times [\overline{\ell}\,\widetilde{\Gamma}_j\,\ell]$

 $O_9:\gamma^{\mu}P_L\otimes\gamma_{\mu}$

 $O_{10}:\gamma^{\mu}P_L\otimes\gamma_{\mu}\gamma_5$

- additional operators required for consistent description at O(α_e)
- ► $b \rightarrow s\{\gamma, g, \overline{q}q\}$ can all contribute to $b \rightarrow s\ell^+\ell^-$ processes
 - $b \rightarrow s\overline{q}q$ operators are typically assumed to be SM-like

To probe BSM physics, we need accurate knowledge of SM contributions!

 $b\to c\tau^-\overline{\nu}$

- matching at tree-level
- ► only one non-zero coefficient
- ► no QCD-induced scale evolution
- e.m. radiative corrections under control [A. Sirlin '90]

 $b\to s\mu^+\mu^-$

matching starts at one-loop

[Adel,Yao hep-ph/9308349]

- ► QCD-induced scale dependence
- ► NNLO QCD matching

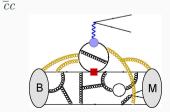
[Greub et al. hep-ph/9703349]

[Bobeth et al. hep-ph/9910220]

► partial NNLL evolution

[Chetyrkin et al. hep-ph/9612313] [Bobeth et al. hep-ph/0312090] [Gorbahn,Haisch hep-ph/0411071] [Gorbahn et al. hep-ph/0504194]

5/19

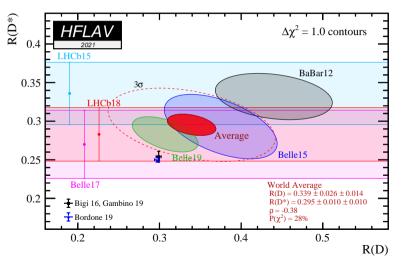

- \blacktriangleright working dominantly to leading order in α_e
- \Rightarrow matrix elements of semileptonic operators factorize
- hadronic matrix elements are discussed in terms of scalar-valued hadronic form factors

 $b \to c \tau^- \overline{\nu} \& b \to s \mu^+ \mu^-$

- number of indep. form factors depends on hadrons involved
- ▶ 3 for $P \to P\ell\ell'$ e.g. $\overline{B} \to D\tau^-\overline{\nu}$ or $B \to K\mu^+\mu^-$
- ► 7 for $P \to V\ell\ell'$ e.g. $\overline{B} \to D^* \tau^- \overline{\nu}$ or $B \to K^* \mu^+ \mu^-$
- ≥ 10 for baryonic processes

 $b \rightarrow s \mu^+ \mu^-$ only

- ► non-local contributions pollute local $b \rightarrow s\mu^+\mu^-$ interactions
- ► dominant: intermediate on-shell vector



$$b \to c \tau^- \overline{\mu}$$

Anomaly in Plots

[HFLAV 1909.12524; Spring '21 update]

$\overline{B} \to D^{(*)}$ Form Factors are special

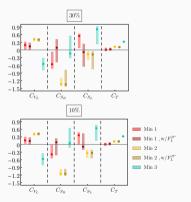
- ► heavy-quark expansion very effective if both quark flavours *b* & *c* are heavy [Isgur,Wise ^{'89}]
 - simultaneous expansion in $lpha_s$ up to NLO and $\Lambda_{
 m had}/m_{b,c}$ up to 2nd power
 - [Falk,Neubert hep-ph/9209268 & hep-ph/9209269]
 - yields relations between form factors across both different currents and processes
 - relates BSM-only (tensor) FF to SM-like matrix elements [Bernlochner et al. 1703.05330]
- ▶ precise lattice QCD results for $\overline{B}_{(s)} \rightarrow D_{(s)}$ form factors in large parts of phase space [FNAL/MILC 1503.07237; HPQCD 1505.03925]
- ▶ first lattice QCD results for $\overline{B}_{(s)} \to D^*_{(s)}$ form factor

[HPQCD 2105.11433; FNAL/MILC 2105.14019]

• consistent picture of all theory inputs to NLO in $\alpha_s \& 1/m^2$

[Bordone et al. 1908.09398 & 1912.09335]

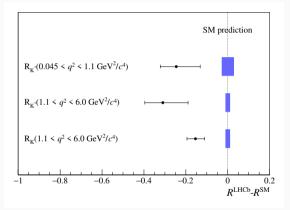
global fit to $b \to c \tau^- \overline{\nu}$ data


- ▶ measurements
 - R_D , R_{D^*}
 - D^* polarisation (optional)
- ► assumptions:
 - $\Gamma(B_c^- \to \tau^- \overline{\nu}) / \Gamma(B_c^-) < X\%$
 - semi-tau. width cannot dominate $\Gamma(B_c^-)$

```
[Alonso et al. 1611.06676]
```

• no r.h. $b \rightarrow c$ vector current, since it is lepton-flavour universal

[Cata, Jung 1505.05804]

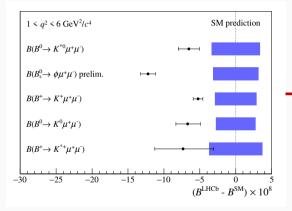

- ► global fits need updating, due to new measurements and predictions
 - $R_{J/\psi}$ from semileptonic B_c decays
- ► LHCb is working hard on new measurements
 - R_D / combined $R_D \& R_{D^*}$ measurements
 - R_{Λ_c} will test complementary WET constraints

[Böer et al. 1907.12554]

- ► Belle II in excellent position to contribute in near future
- ► a lot of work before LFU violation can be claimed!
 - anomalies tend to vanish
 - ► theory under good control; need more measurements!

$$b \to s \mu^+ \mu^-$$

_



$$R_X \equiv \frac{\langle \mathcal{B}(B \to X\mu^+\mu^-) \rangle_{1,6}}{\langle \mathcal{B}(B \to Xe^+e^-) \rangle_{1,6}}$$

[plot by C Langenbruch]

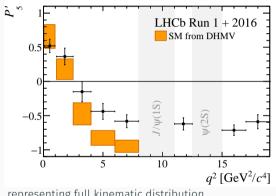
- ► SM predictions ~ 1 if $1 \text{ GeV}^2 \le q^2 = m_{\ell\ell}^2 \le 6 \text{ GeV}^2$
- \blacktriangleright LHCb meas. consistently lower, with $\geq 3\,\sigma$ tensions in R_K

see talks by L. Grillo & C. Benito

► SM predictions ~ 1 if

$$1 \text{ GeV}^2 \le q^2 = m_{\ell\ell}^2 \le 6 \text{ GeV}^2$$

► LHCb meas. consistently lower, with $\geq 3 \sigma$ tensions in R_K


see talks by L. Grillo & C. Benito

- \blacktriangleright larger th. uncertainties for ${\cal B}$
- ► muonic *B* systematically below SM pred.

$$\left< \mathcal{B}(B \to X \mu^+ \mu^-) \right>_{1,6}$$

[plot by C. Langenbruch]

Anomalies in Plots

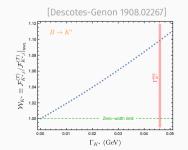
representing full kinematic distribution of $B \rightarrow K^* (\rightarrow K \pi) \mu^+ \mu^-$

- ► SM predictions ~ 1 if $1 \text{ GeV}^2 \le q^2 = m_{\ell\ell}^2 \le 6 \text{ GeV}^2$
- LHCb meas. consistently lower, with $\geq 3 \sigma$ tensions in R_K

see talks by L. Grillo & C. Benito

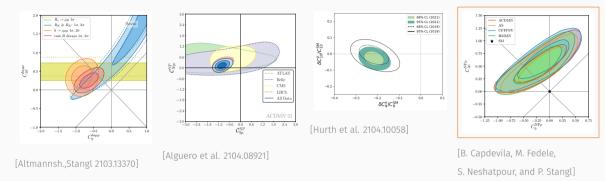
- \blacktriangleright larger th. uncertainties for ${\cal B}$
- ► muonic *B* systematically below SM pred.
- \blacktriangleright angular observables compared in bins of q^2
- deviations significant and consistent with R_X , \mathcal{B}

- ▶ to LO in α_e , SM prediction differs from 1 only due to $4m_\mu^2/q^2$ factors
 - various groups agree on predictions in the SM
- ► radiative corrections
 - ► semi-analytic calculation of integrated R_K agrees with *PHOTOS*-based simulation


[Bordone,Isidori,Pattori 1605.07633]

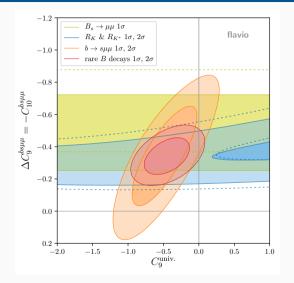
- double-differential distribution can suffer from large correction, requires more careful treatment compatible with current best practice [Isidori,Nabeebaccus,Zwicky 2009.00929]
- ► no structure-dependent studies yet for rare semileptonic decays, but important insights gained from QED factorization studies for $B_s \rightarrow \mu\mu$ and non-leptonic $B \rightarrow K\pi$ decays

[Beneke,Bobeth,Szafron 1908.07011]


[Beneke,Böer,Toelstede,Vos 2008.10615]

- ► large uncertainties, since (local) form factors cannot cancel
- ▶ largest deviations seen at small q^2 values: $1 \text{ GeV}^2 \le q^2 \le 6 \text{ GeV}^2$
 - current lattice QCD results limited to $q^2\gtrsim 12\,{\rm GeV}^2$
 - ► theory predictions at small *q*² dominated by QCD light-cone sum rules with large uncertainties
- $\blacktriangleright\,$ first attempt to account for non-zero width in $K^* \to K \pi$
 - ► SM prediction grows by ~ 20%, increasing tensions
 - effect cancels in ratios (LFU, ang. obs.)

- normalization cancels hadronic form factors partially
 - theory correlations indispensable
 - ► using lattice QCD info if available, heavy-quark expansion if not
- \blacktriangleright major task: disentangle non-local contributions from WET coefficients $C_7 \& C_9$
- non-local effects: using pertubative QCD at time-like momentum transfer below narrow charmonium resonances
 - ► a-posteriori tests seem to indicate that non-local effects are not driving the anomalies
 - ► nevertheless, poses presently the largest systematic uncertainty in the determination of the C₉ WET coefficient


Interpretation — Weak Effective Theory

- ► several groups carrying out fits, with varying assumptions and datasets
 - stunning agreement between results of four of the major fitting groups when considering common subset of data
- scenario dependent tensions
 - tension $> 5 \sigma$ for all-operator fits to all data
 - tension $\geq 4 \sigma$ for fits to "clean" subset of data

[all semi-leptonic ops]

Universal vs Non-Universal BSM Contributions

- several groups investigate both LFU and LFUV contrib.
- + tension larger than in μ-only assumption!
- LFU part sensitive to non-local form factors
- accurate interpretation requires accurate predictions of non-local form factors

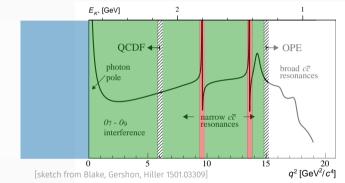
[Altmannshofer,Stangl 2103.13370]

LFU observables:

- ► SM prediction very clean; e.m. radiative contributions seem under control
- ► for confirmation, measurements independent of LHCb seem mandatory looking at Belle (II), ATLAS, and CMS

LFU observables:

- ► SM prediction very clean; e.m. radiative contributions seem under control
- ► for confirmation, measurements independent of LHCb seem mandatory looking at Belle (II), ATLAS, and CMS


non-LFU observables:

- ► overwhelming number of measurements are of non-LFU observables
 - large variety of q^2 bins
 - ▶ across LHC experiments and BaBar/Belle
- ► branching ratios & angular observables require further theory improvements
 - theory uncertainties currently limiting factor in fit significances!

New Strategy

parametrize non-local effects

[Bobeth et al. 1707.07305; Gubernari et al. 2011.09813]

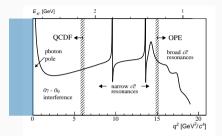
- predict non-local form factors in timelike region
- extrapolate to spacelike region
- ► account for experimental measurements of non-leptonic decays
- global fit based on recent parametrization in preparation

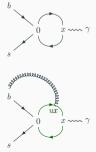
[Gubernari,Reboud,DvD,Virto w.i.p.]

Conclusion

- $b \to c \tau^- \overline{\nu}$ anomalies seem stable
 - ► recent lattice QCD analyses (HPQCD, FNAL/MILC) pave road toward high-precision theory-only predictions for $\overline{B} \to D^* \tau^- \overline{\nu}$
 - ► looking forward to complementary measurements by LHC experiments and Belle II
- ► longstanding $b \rightarrow s\mu^+\mu^-$ anomalies make us #cautiouslyexcited
 - ▶ significances of the $b \rightarrow s\mu^+\mu^-$ anomalies have been increasing with growing data sets
 - ► LFU observables are limited by experimental data
 - non-LFU observables are limited by theory
 - non-local form factors single-largest systematic theory uncertainty

Backup Slides


Compute Light-Cone OPE


 $4m_c^2-q^2\gg\Lambda_{\rm hadr.}^2$

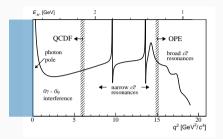
 \blacktriangleright expansion in operators w/ light-like sep. $x^2\simeq 0$

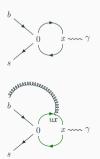
[Khodjamirian, Mannel, Pivovarov, Wang 2010]

employing light-cone expansion of charm
 propagator [Balitsky, Braun 1989]

$$\xrightarrow{2^2 \ll 4m_c^2} \underbrace{\left(\frac{C_1}{3} + C_2\right)g(m_c^2, q^2)}_{\text{coeff #1}} \ [\bar{s}\,\Gamma\,b] + \cdots$$

+ (coeff #2) × $[\overline{s}_L \gamma^{\alpha} (in_+ \cdot D)^n \tilde{G}_{\beta\gamma} b_L]$


Compute Light-Cone OPE


 $4m_c^2-q^2\gg\Lambda_{\rm hadr.}^2$

 \blacktriangleright expansion in operators w/ light-like sep. $x^2\simeq 0$

[Khodjamirian, Mannel, Pivovarov, Wang 2010]

employing light-cone expansion of charm
 propagator
 [Balitsky, Braun 1989]

$$\Rightarrow \mathcal{H}_{\lambda} = \text{coeff } \#1 \times \mathcal{F}_{\lambda} + \mathcal{H}_{\lambda}^{\text{spect.}} + \text{coeff } \#2 \times \tilde{\mathcal{V}}_{\lambda}$$

► leading part identical to QCD fact. results [Beneke, Feldmann, Seidel '01&'04]

▶ subleading matrix element $\tilde{\mathcal{V}}_{\lambda}$ can be inferred from *B*-LCSRs

[Khodjamirian, Mannel, Pivovarov, Wang '10; Gubernari, DvD, Virto '21]

Compute Soft gluon matrix elements

matrix elements of a single operator appearing at subleading power in the LCOPE

 $\tilde{\mathcal{V}}_{\lambda} \sim \langle M | \, \overline{s}(0) \gamma^{\rho} P_L G^{\alpha\beta}(-u n^{\mu}) \, b(0) \, | \overline{B} \rangle$

for $B \to K^{(*)}$ and $B_s \to \phi$ transitions

▶ matrix element has been prev. calculated in light-cone sum rules

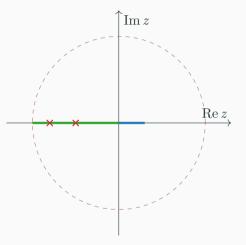
[Khodjamirian, Mannel, Pivovarov, Wang '10]

- physical picture provides that the soft gluon field originates from the \overline{B} meson
 - analytical results independent of two-particle $b\overline{q}$ Fock state inside the \overline{B}
 - ► expressions start with three-particle *bqG* Fock state, and their light-cone distribution amplitudes (LCDAs)

 $\Phi(t, u) \sim \langle 0 | \,\overline{q}(x) G^{\mu\nu}(ux) \Gamma h_v^b(0) \, |\overline{B}(vM_B) \rangle \qquad x^{\mu} = t n^{\mu}$

► original results lacking four out of eight three-particle LCDAs [Gubernari,DvD,Virto '20]

Compute Soft gluon matrix elements


- ► we calculate the soft-gluon contributions \tilde{V}_{λ} to the full set of $B \rightarrow V$ and $B \rightarrow P$ nonlocal form factors using light-cone sum rules [Gubernari,DvD,Virto '20]
 - ► analytic results for restricted set of LCDAs in full agreement with KMPW2010

[Khodjamirian, Mannel, Pivovarov, Wang '10]

- result of restricted set fails to reproduce duality thresholds obtained from local form factor sum rules
 [Gubernari, Kokulu, DvD '18]
- cross check: our results reproduce the (local) duality thresholds!
- ▶ our numerical results differ significantly from KMPW2010
 - reduction by factor ~ 100 , differences well understood!
 - \blacktriangleright reduction by ~ 10 from update inputs, and ~ 10 from cancellations due to new terms
- conclusion: soft-gluon contributions are not numerically relevant for $q^2 < 0$

Extrapolate Parametrisation of the nonlocal form factors

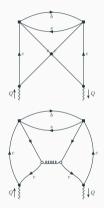
- ▶ map q^2 to new variable z that develops branch cut at $q^2 = 4M_D^2$ [Bobeth, Chrzaszcz, DvD, Virto '17]
 - branch cut is mapped onto unit circle in z
- ► data and theory live inside the unit circle
 - \blacktriangleright real-valued $q^2 \leq 4 M_D^2$ is mapped to real-valued z
- \blacktriangleright expand in z
 - + resonances J/ψ , $\psi(2S)$ can be included (poles/Blaschke factors)
 - + easy to use in a fit to theory and data
 - + compatible with analyticity
 - expansion coefficients unbounded!

Extrapolate New parametrisation w/ dispersive bound

matrix elements \mathcal{H} arise from nonlocal operator

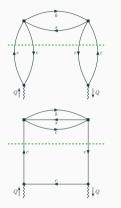
[Gubernari,DvD,Virto '20]

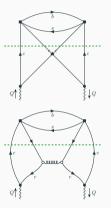
$$O^{\mu}(Q;x) \sim \int d^4 y \, e^{iQ \cdot y} \, T\{J^{\mu}_{\text{em}}(x+y), [C_1 O_1 + C_2 O_2](x)\}$$


construct four-point operator to derive a dispersive bound

► define matrix element of "square" operator

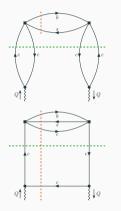
$$\left[\frac{Q^{\mu}Q^{\nu}}{Q^{2}} - g^{\mu\nu}\right] \Pi(Q^{2}) \equiv \int d^{4}x \, e^{iQ \cdot x} \langle 0| \ T\{O^{\mu}(Q;x)O^{\dagger,\nu}(Q;0)\} |0\rangle$$

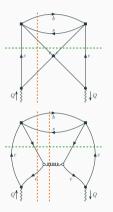

- $\Pi(Q^2)$ has two types of discontinuities
 - ▶ from intermediate unflavoured states (*cc̄*, *cc̄cc̄*, ...)
 - ▶ from intermediate *bs*-flavoured states (*bs*, *bsg*, *bscc*, ...)



diagrams start at three loops

- diagrams to LO in α_s: top, and bottom left
- one diagram to NLO in α_s (bottom right), for illustration only




diagrams start at three loops

- diagrams to LO in α_s: top, and bottom left
- one diagram to NLO in α_s (bottom right), for illustration only

discontinuities

from intermediate unflavoured states (cc, cccc, ...)

diagrams start at three loops

- diagrams to LO in α_s : top, and bottom left
- one diagram to NLO in α_s (bottom right), for illustration only

discontinuities

- ▶ from intermediate unflavoured states (cc̄, cc̄cc̄c, ...)
- from intermediate bs-flavoured states (bs, bsg, bscc, ...)

Extrapolate Dispersion relation for Π

dispersive representation of the $b\overline{s}$ contribution to derivative of Π

$$\chi(Q^2) \equiv \frac{1}{2!} \left[\frac{d}{dQ^2} \right]^2 \Pi(Q^2) = \frac{1}{2!} \left[\frac{d}{dQ^2} \right]^2 \frac{1}{2i\pi} \int_{(m_b + m_s)^2}^{\infty} ds \, \frac{\text{Disc}_{b\bar{s}} \Pi(s)}{s - Q^2} > 0$$

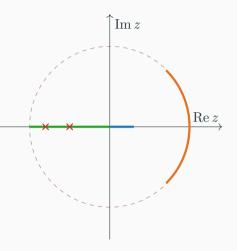
► Disc_{*b*₅} **Π** can be computed in the local OPE $\rightarrow \chi^{OPE}(Q^2)$

- ► Disc_{bs} II can be expressed in terms of the nonlocal form factors $|\mathcal{H}_{\lambda}|^2$ $\rightarrow \chi^{had}(Q^2)$
- ▶ global quark hadron duality suggests that $\chi^{\rm OPE}(Q^2) = \chi^{\rm had}(Q^2)$
- parametrize $\mathcal{H}_{\lambda} \propto \sum_{n} \alpha_{\lambda,n} f_{n}$ with orthonormal functions f_{n}

$$\Rightarrow$$
 dispersive bound: $\chi^{\mathsf{OPE}} \geq \sum_{n} |lpha_{\lambda,n}|^2$

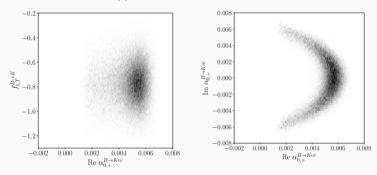
- ► first application of such a bound to nonlocal form factors
- ► technically more challenging than for local form factors

Extrapolate New parametrisation w/ dispersive bounds


- \blacktriangleright expand in z
 - $f_n(z)$ orthogonal on arc
 - + accounting for behaviour on arc produces dispersive bound on each parameter

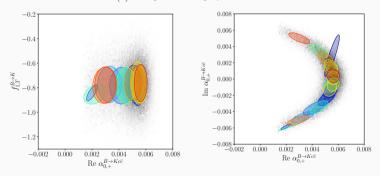
[Gubernari, DvD, Virto '20]

- ► turns so far hardly quantifiable systematic theory uncertainties into parametric uncertainties
- currently being implemented in

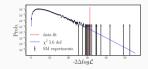


- open source software at github.com/eos/eos
- available from PyPI for easy dissemination to both theory + experimental colleagues

Preliminary Results


► "first stage" simultaneous fit of parameters of local and non-local form factors to theory inputs + $B_{(s)} \rightarrow \{K, K^*, \phi\} J/\psi$ [Gubernari, Reboud, DvD, Virto (to appear)]

- N.B.: non-local parameters are complex numbers
- cartesian parametrisation leads to non-gaussian posterior


Preliminary Results

► "first stage" simultaneous fit of parameters of local and non-local form factors to theory inputs + $B_{(s)} \rightarrow \{K, K^*, \phi\} J/\psi$ [Gubernari, Reboud, DvD, Virto (to appear)]

- N.B.: non-local parameters are complex numbers
- cartesian parametrisation leads to non-gaussian posterior
- successfully described by gaussian mixture density
- investigating polar parametrisation

▶ we plan to publish the mixture density in digital form, including a test statistic to determine a goodness of fit in BSM studies

how to determine a global significance?

[Lancierini et al. 2104.05631]

- fitting a few-operator scenario is not a suitable way to establish significance of a tension
 - not invariant under reparametrization
- accounting for all operators similar to Look-Elsewhere Effect [Lancierini et al. 2104.05631]
- recent conservative analysis of subset of the available data yields global significance of 3.9σ , despite large "trial factors"
 - ► n.b.: should probably be interepreted as a lower bound on the global significance