OBSERVATION OF THE CNO CYCLE WITH THE BOREXINO EXPERIMENT

Alessandra Carlotta Re
alessandra.re@mi.infn.it
for the Borexino collaboration
Our Sun emits a tremendous number of neutrinos due to the fusion reactions occurring in its core:

\[4p \rightarrow \alpha + 2e^+ + 2\nu_e \quad E_{\text{released}} \sim 26\text{ MeV} \]

Neutrinos interact through the weak-interaction only:

\[\sigma \approx 10^{-44}\text{ cm}^2 \quad @\ 1\text{ MeV} \]

They are very elusive and thus, they are a very powerful tool to study astrophysical objects.

Photons massively interact with the solar plasma and take about \(10^5\) years to reach our star surface. Instead, neutrinos only take about the famous 8 minutes to travel from their production site to the Sun surface and to the Earth.

Performing solar neutrino spectroscopy is the only way to get a real snapshot of the Sun and (true) real time informations.
What are solar neutrinos?

pp chain: ~ 99% E_sun

- **pp-ν**
 - \(p+p \rightarrow ^2H+e^++ν_e \) 99.6%
 - \(^2H+p \rightarrow ^3He+γ \) 85%
 - \(^3He+^3He \rightarrow ^4He+2p \) 15%

- **pep-ν**
 - \(p+e^-+p \rightarrow ^2H+ν_e \) 0.4%

CNO cycle: ~ 1% E_sun

- **CNO-ν**
 - \(^{12}C+p \rightarrow ^{13}N+γ \)
 - \(^{13}N \rightarrow ^{13}C+e^++ν_e \)
 - \(^{13}C+p \rightarrow ^{14}N+γ \)
 - \(^{14}N+p \rightarrow ^{15}O+γ \)
 - \(^{15}O \rightarrow ^{15}N+e^++ν_ℓ \)
 - \(^{15}N+p \rightarrow ^{4}He+^{12}C \)

What are solar neutrinos?

pp chain: ~ 99% E_sun

- **pp-ν**
 - \(p+p \rightarrow ^2H+e^++ν_e \) 99.6%
 - \(^2H+p \rightarrow ^3He+γ \) 85%
 - \(^3He+^3He \rightarrow ^4He+2p \) 15%

- **pep-ν**
 - \(p+e^-+p \rightarrow ^2H+ν_e \) 0.4%

CNO cycle: ~ 1% E_sun

- **CNO-ν**
 - \(^{12}C+p \rightarrow ^{13}N+γ \)
 - \(^{13}N \rightarrow ^{13}C+e^++ν_e \)
 - \(^{13}C+p \rightarrow ^{14}N+γ \)
 - \(^{14}N+p \rightarrow ^{15}O+γ \)
 - \(^{15}O \rightarrow ^{15}N+e^++ν_ℓ \)
 - \(^{15}N+p \rightarrow ^{4}He+^{12}C \)
A Standard Solar Model (SSM) is a complex container where input parameters (such as Sun luminosity, age, mass, radius, chemical elements abundances, cross-sections, radiative opacity, metallicity....) are considered all together and result in expectations about the neutrino fluxes and helioseismology.

<table>
<thead>
<tr>
<th>Flux</th>
<th>B16-GS98</th>
<th>B16-AGSS09met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ(pp)</td>
<td>5.98(1 ± 0.006)</td>
<td>6.03(1 ± 0.005)</td>
</tr>
<tr>
<td>Φ(pep)</td>
<td>1.44(1 ± 0.01)</td>
<td>1.46(1 ± 0.009)</td>
</tr>
<tr>
<td>Φ(hep)</td>
<td>7.98(1 ± 0.30)</td>
<td>8.25(1 ± 0.30)</td>
</tr>
<tr>
<td>Φ(7Be)</td>
<td>4.93(1 ± 0.06)</td>
<td>4.50(1 ± 0.06)</td>
</tr>
<tr>
<td>Φ(8B)</td>
<td>5.46(1 ± 0.12)</td>
<td>4.50(1 ± 0.12)</td>
</tr>
<tr>
<td>Φ(13N)</td>
<td>2.78(1 ± 0.15)</td>
<td>2.04(1 ± 0.14)</td>
</tr>
<tr>
<td>Φ(15O)</td>
<td>2.05(1 ± 0.17)</td>
<td>1.44(1 ± 0.16)</td>
</tr>
<tr>
<td>Φ(17F)</td>
<td>5.29(1 ± 0.20)</td>
<td>3.26(1 ± 0.18)</td>
</tr>
</tbody>
</table>

Model and Solar Neutrino Fluxes. Units are: \(10^{10}(pp)\), \(10^{9}(7\text{Be})\), \(10^{8}(\text{pep}, 13\text{N}, 15\text{O})\), \(10^{9}(8\text{B}, 17\text{F})\), and \(10^{3}(\text{hep})\) cm\(^{-2}\) s\(^{-1}\).
A Standard Solar Model (SSM) is a complex container where input parameters (such as Sun luminosity, age, mass, radius, chemical elements abundances, cross-sections, radiative opacity, metallicity....) are considered all together and result in expectations about the neutrino fluxes and helioseismology.

<table>
<thead>
<tr>
<th>Flux</th>
<th>B16-GS98</th>
<th>B16-AGSS09met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ(pp)</td>
<td>5.98(1 ± 0.006)</td>
<td>6.03(1 ± 0.005)</td>
</tr>
<tr>
<td>Φ(pep)</td>
<td>1.44(1 ± 0.01)</td>
<td>1.46(1 ± 0.009)</td>
</tr>
<tr>
<td>Φ(hep)</td>
<td>7.98(1 ± 0.30)</td>
<td>8.25(1 ± 0.30)</td>
</tr>
<tr>
<td>Φ((^{7})Be)</td>
<td>4.93(1 ± 0.06)</td>
<td>4.50(1 ± 0.06)</td>
</tr>
<tr>
<td>Φ((^{8})B)</td>
<td>5.46(1 ± 0.12)</td>
<td>4.50(1 ± 0.12)</td>
</tr>
<tr>
<td>Φ((^{12})N)</td>
<td>2.78(1 ± 0.15)</td>
<td>2.04(1 ± 0.14)</td>
</tr>
<tr>
<td>Φ((^{15})O)</td>
<td>2.05(1 ± 0.17)</td>
<td>1.44(1 ± 0.16)</td>
</tr>
<tr>
<td>Φ((^{17})F)</td>
<td>5.29(1 ± 0.20)</td>
<td>3.26(1 ± 0.18)</td>
</tr>
</tbody>
</table>

About 9% difference
About 18% difference
About 28% difference
THE SOLAR NEUTRINO SPECTRUM

B16 - Solar Model
N. Vinyoles et al.
THE SOLAR NEUTRINO SPECTRUM

BOREXINO EFFECTIVE ENERGY RANGE

N. Vinyoles et al.

Taking into account the solar neutrino spectrum, the BOREXINO collaboration has achieved the following goals:

- **pp [± 0.6%]**
- **^{7}\text{Be} [± 6%]**
- **^{13}\text{N} [± 15%]**
- **^{15}\text{O} [± 17%]**
- **^{17}\text{F} [± 20%]**
- **^{8}\text{B} [± 12%]**
- **hep [± 30%]**

ORIGINAL GOAL

LP 2021 | January 13, 2022
Alessandra Carlotta Re
The LNGS altitude is 963 m and the average rock cover is about 1400 m. The shielding capacity against cosmic rays is about 3800 m.w.e.:

in Borexino the muon flux is reduced by a factor 10^6 with respect to the surface. $\Phi(\mu) \approx 1 \mu/m^2/h$
The Borexino Experiment

- **Detection method**: elastic scattering of neutrinos on electrons.
 \[\nu_x + e \rightarrow \nu_x + e \quad x = e, \mu, \tau \]

- **Detection medium**: large mass of organic liquid scintillator.
 - Advantage: large light-yield;
 - Disadvantage: no directional informations.

The expected rate of ^7Be solar-ν in 100 ton of BX scintillator is about 50 counts/day which corresponds to 10^{-9} Bq/Kg. Just for comparison, natural water is about 1 Bq/Kg in ^{238}U, ^{232}Th and ^{40}K.

Signal is indistinguishable from background: high radiopurity is a MUST!
Water Tank:
2.8 kton of pure H_2O
γ and n shield
μ water Č detector
208 PMTs in water

Nylon vessels:
Outer: 5.50 m
Inner: 4.25 m

Scintillator:
280 ton of PC+PPO in a 125 μm thick nylon vessel;
Fiducial mass ~ 100 ton;
Electron density:
$\left(3.307 \pm 0.003\right) \times 10^{29}/\text{ton}$
Mass density: $\approx 0.879 \text{ g/cm}^3$

Stainless Steel Sphere:
2212 PhotoMultipliers

Non-scintillating buffer:
900 ton of quenched scintillator

Water Tank:
2.8 kton of pure H_2O
γ and n shield
μ water Č detector
208 PMTs in water
Even at the Borexino very high radiopurity conditions, we still have background events contaminating our solar neutrino signal and we need to apply software cuts to data, in order to remove as much background as possible.
The Three-Fold Coincidence Technique

The TFC technique is fundamental to improve the fit capability to disentangle the ^{11}C contamination from the pep & CNO neutrino signals.

\[\mu + ^{12}\text{C} \rightarrow \mu + ^{11}\text{C} + n \]

\[^{11}\text{C} \rightarrow ^{11}\text{B} + e^+ + \nu_e \quad \tau \sim 30 \text{ min} \]

\[n + p \rightarrow d + \gamma \quad \tau \sim 250 \mu\text{s} \]

The likelihood that a certain event is ^{11}C is obtained using:

- Distance in space and time from the μ-track;
- Distance from the neutron;
- Neutron multiplicity;
- Muon dE/dx and number of muon clusters per event.
A comprehensive solar neutrino spectroscopy with Borexino

The Borexino experiment has never been so performing...

1. **Best radiopurity**: natural radio-decay + purification campaigns;
2. **High statistics**: several years of DAQ;
3. **Optimal comprehension of the details of the energy scale and detector response**: extensive calibration + 14 years of knowledge.

.... So all challenges at once!

For the first time it was possible to perform a simultaneous fit on the whole solar neutrino energy region.
“Comprehensive measurement of pp-chain solar neutrinos”,
Nature 562 (2018) 505

LER (Low Energy Region) Analysis:
Physical Review D 100, 082004 (2019)

HER (High Energy Region) Analysis:
Physical Review D 101, 062001 (2020)
“Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun”, Nature 587 (2020) 577
HOW TO EXTRACT THE CNO-ν SIGNAL?

Data-set: Phase-III (July 2016 - February 2020) --> Exposure: 1072 days x 71.3 t

Fit range: 0.32 - 2.64 MeV.

Software cuts: 1) Removing muons
2) Selecting a fiducial volume ($r < 2.8$ m, -1.8 m $< z < 2.2$ m)
3) Tagging/Subtracting ^{11}C background
How to extract the CNO-ν signal?

Data-set: Phase-III (July 2016 - February 2020) --> Exposure: 1072 days x 71.3 t

Fit range: 0.32 - 2.64 MeV.

Software cuts: 1) Removing muons
 2) Selecting a fiducial volume (r < 2.8 m, -1.8 m < z < 2.2 m)
 3) Tagging/Subtracting 11C background
Strategy:
Exploiting the difference in the energy distribution of signal and backgrounds to separate them.

The spectral shapes for both components are generated in a Borexino-tailored Geant4 Monte Carlo framework.
THE BX PREDICTED SPECTRAL SHAPES
Towards the CNO-ν measurement

The similarity between the CNO, pep and 210Bi spectral shapes limits the sensitivity of Borexino.

The predicted neutrino rates do not help:
- CNO $\nu \sim 4$-5 cpd/100 ton
- pep $\nu \sim 3$ cpd/100 ton
- 210Bi ~ 15-20 cpd/100 ton
To reduce correlations we put a constraint on the pp/pep ratio following the theoretical predictions as described in *Nature 562 (2018)*, 505.
THE PP/PEP RATIO CONSTRAINT

Still, the 210Bi spectrum is quasi-degenerate with the CNO neutrino one.....

To reduce correlations we put a constraint on the pp/pep ratio following the theoretical predictions as described in Nature 562 (2018), 505.
THE BISMUTH-210 CONSTRAINT

The ^{210}Bi spectrum is still quasi-degenerate with the CNO neutrino one… … But the ^{210}Bi rate can be constrained by precisely (and independently) mapping the ^{210}Po rate!

$$^{210}\text{Pb} \xrightarrow{\beta^- \ 23 \text{y}} ^{210}\text{Bi} \xrightarrow{\beta^- \ 5 \text{d}} ^{210}\text{Po} \xrightarrow{\alpha \ 138 \text{d}} ^{206}\text{Pb} \text{ (stable)}$$

^{210}Po is “easier” to identify than ^{210}Bi:
- α decay \rightarrow pulse shape discrimination
- Monoenergetic “gaussian” peak
Unluckily, life is not that easy.

The convective motions triggered by seasonal changes in temperature bring inside the scintillator an unknown amount of ^{210}Po which has been present on the nylon Inner Vessel.

This breaks the secular equilibrium of the ^{210}Pb chain!

Before performing any counting analysis, we had to thermally insulate the detector to stop convective motions!

MAIN CONCEPT:
Strong and stable vertical gradient to prevent convective motions
The Borexino detector is covered with a 20cm-thick layer of rock wool.
Effects on Polonium-210

\(^{210}\)Po counting rate inside the Inner Vessel scintillator volume

1: Beginning of the insulation program
2: Turning off of the water recirculation system in the water tank;
3: First operation of the active temperature control system;
4: Change of the active control set point
5: Installation and commissioning of the hall temperature control system.
The Bismuth-210 Constraint

There is an innermost region of the scintillator which is almost free of convective currents: the ^{210}Po rate can be there fitted assuming bulk+IV contributions.

We get a minimum for the ^{210}Po rate and an upper limit for the ^{210}Bi rate!

This ^{210}Bi upper limit can be extended over the full FV if and only if ^{210}Bi is found, within error, uniform both in the angular and radial distributions. And this is our case.

^{210}Bi stable in time \rightarrow ^{210}Pb leaching from the nylon vessel is negligible.

$$R(^{210}\text{Bi}) < 11.5 \pm 1.3 \text{ cpd/100t}$$
A Multivariate fit is performed and the neutrino interaction rates are obtained by maximizing a binned likelihood function which includes both the 11C-subtracted and 11C-tagged energy spectrum, as well as the radial distribution. The rate of signals and backgrounds are left free parameters of the fit with the two discussed exceptions: 210Bi and pep.

$$\mathcal{L}_{\text{MV}} = \mathcal{L}_{^{11}\text{Csub}} \cdot \mathcal{L}_{^{11}\text{Ctag}} \cdot \mathcal{L}_{\text{rad}}$$
THE CNO MEASUREMENT: RESULTS

\[R(CNO) = 7.2^{+2.9}_{-1.7} \text{ cpd/100 t (stat)} \]

Nature 587 (2020) 577
“Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun”.

LP 2021 | January 13, 2022
Alessandra Carlotta Re
No CNO hypothesis disfavored at 5σ

\[R(\text{CNO}) = 7.2^{+3.0}_{-1.7} \text{ cpd/100 t (stat + sys)} \]

\[\Phi(\text{CNO}) = 7.0^{+3.0}_{-2.0} \times 10^8 \text{ \(\nu/cm^2/s \) (stat + sys)} \]
Solar neutrinos were and still are essential in proving how the Sun shines and in discovering and studying the physics of neutrino oscillations.

Borexino has successfully mapped out the entire pp solar fusion chain at high precision and it has demonstrated the existence of CNO solar neutrinos for the first time (significance 5σ).

With future experiments (like JUNO), a more precise measurement of the CNO neutrinos rate could give us key knowledge of the Sun’s metallicity and of how the massive stars burns.
PER ASPERA AD ASTRA:
FAREWELL AND THANK-YOU BOREXINO!

First Physics Run: 05/16/2007
Last Physics Run: 10/07/2021

In-between… about 30k DAQ runs, a lot of Physics, and 5258 beautiful days.