

LS LOWRY, Peel Park, Salford (1944)

30th International Symposium on Lepton Photon Interactions at High Energies. Manchester, 10-14 January 2022

Topics and parallel sessions

- Precision measurement of B_s meson oscillations
- \bigcirc Observation of D^0 meson mass difference
 - Observation of direct *CP* violation with D^0 mesons
 - Time-dependent *CP* violation search with D^0 mesons
 - *CP* violation searches with $D^+_{(s)}$ mesons
 - *CP* violation in charmless B^+ decays
 - Unitarity Triangle: β
 - Unitarity Triangle: γ
 - CP violating phase with *B*_s mesons

Malcolm John - University of Oxford

Wed 10:00: Markus Reif

"Hadronic B decays at Belle II"

Wed 12:00: Radek Zlebcik

"Charm and TDCPV in B decays at Belle II"

Wed 10:40: Jordy Butter "CPV and CKM measurements with beauty decays at LHCb"

$B_{c} \leftrightarrow \overline{B}_{s}$ mixing frequency: Δm_{s}

Mixing occurs if the eigenstates of the hamiltonian are not aligned with the interactions eigenstates:

Malcolm John - University of Oxford

$|B_{sH}\rangle = p |B_s\rangle - q |B_s\rangle$ $|B_{sL}\rangle = p |B_s\rangle + q |\overline{B}_s\rangle$

$B_{c} \leftrightarrow \overline{B}_{c}$ mixing frequency: Δm_{s}

Mixing occurs if the eigenstates of the hamiltonian are not aligned with the interactions eigenstates:

Malcolm John - University of Oxford

 $|B_{sH}\rangle = p |B_s\rangle - q |B_s\rangle$ $|B_{sL}\rangle = p |B_s\rangle + q |\overline{B}_s\rangle$

average decay width

$$\Gamma_{s} = (\Gamma_{\rm H} + \Gamma_{\rm L})/2 \qquad \Delta \Gamma_{s} = \Gamma_{\rm H} - \Gamma_{\rm L}$$

$$P(t) \sim e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + C \cdot \cos(\Delta m_{s} + m_{\rm H}) - C \cdot \cos(\Delta m_{s} + m_{\rm H}) \right]$$
Ability to observe
mixed B_{s} meson

Constant C = -1 (+1) for mixed (unmixed) B_s meson

mass difference

Malcolm John - University of Oxford

$\Delta m_s \text{ with } B_s \to D_s^{\pm} \pi^{\mp}$

- Identify decay flavour with Cabibbo-favoured $b \to c\pi^-$ vs. $\overline{b} \to \overline{c}\pi^+$ transition
 - DCS contribution negligible
- Identify initial flavour with flavour tagging. Effecting performance at LHCb: 6.1% of ideal. c.f. ~ 31% at Belle(II)

- An initial mass fit identifies 379k signal events
- Result with $B_s \rightarrow D_s \pi$ combined with earlier result using $B_s \rightarrow D_s \pi \pi \pi (\square EP \ O3 \ (2021) \ 137)$ $\Delta m_s = 17.7656 \pm 0.0057 \,\mathrm{ps}^{-1}$

Malcolm John - University of Oxford

Pioneered by Babar Phys. Rev. Lett. 98 (2007) 211802, and Belle Phys. Rev. Lett. 98 (2007) 211803, LHCb shown Phys. Rev. D97 (2018) 031101

On the other hand, charm mixing is slow

- Probability of mixing too small to measure complete oscillations Though flavour tagging is near-perfect: $D^{*+} \rightarrow D^0 \pi^+$ or $B^- \rightarrow D^0 \mu^- \nu$
- Instead, look for a time-dependant change in the rate of DCS decays

$$\Gamma(D^0 \to K^+ \pi^-) = |g_+(t) r_D e^{-i\delta_D} + g_-(t)|^2$$

Malcolm John - University of Oxford

Pioneered by Babar Phys. Rev. Lett. 98 (2007) 211802, and Belle Phys. Rev. Lett. 98 (2007) 211803, LHCb shown Phys. Rev. D97 (2018) 031101

On the other hand, charm mixing is slow

- Probability of mixing too small to measure complete oscillations Though flavour tagging is near-perfect: $D^{*+} \rightarrow D^0 \pi^+$ or $B^- \rightarrow D^0 \mu^- \nu$
- Instead, look for a time-dependant change in the rate of DCS decays

$$\Gamma(D^{0} \to K^{+}\pi^{-}) = \left| g_{+}(t) r_{D}e^{-i\delta_{D}} + g_{-}(t) \right|^{2}$$

$$= e^{-\Gamma t} \left[\frac{1}{2}r_{D}^{2} \left(\cosh(y\Gamma t) + \cos(x\Gamma t) \right) \right]$$

$$= e^{-\Gamma t} \left[\frac{1}{2}r_{D}^{2} \left(\cosh(y\Gamma t) + \cos(x\Gamma t) \right) \right]$$

$$x \equiv \Delta m / \Gamma \qquad \qquad y \equiv$$

dimensionless parameters O(1%)

$$r_D^2 + r_D \left(y \cos \delta_D - x \sin \delta_D\right) \left(\frac{t}{\tau}\right) +$$

Malcolm John - University of Oxford

 $) + \frac{1}{2} \left(\cosh(y\Gamma t) - \cos(x\Gamma t) \right) + r_D \left(\cos \delta_D \sinh(y\Gamma t) - \sin \delta_D \sin(x\Gamma t) \right)$ *new term*

 $\equiv \Delta \Gamma / 2 \Gamma$

$$\frac{y^2 + x^2}{4} \left(\frac{t}{\tau}\right)^2$$

Pioneered by Babar Phys. Rev. Lett. 98 (2007) 211802, and Belle Phys. Rev. Lett. 98 (2007) 211803, Recent LHCb shown Phys. Rev. D97 (2018) 031101

On the other hand, charm mixing is slow

- Probability of mixing too small to measure complete oscillations Though flavour tagging is near-perfect: $D^{*+} \rightarrow D^0 \pi^+$ or $B^- \rightarrow D^0 \mu^- \nu$
- Instead, look for a time-dependant change in the rate of DCS decays

$$\Gamma(D^{0} \to K^{+}\pi^{-}) = \left| g_{+}(t) r_{D}e^{-i\delta_{D}} + g_{-}(t) \right|^{2}$$

$$= e^{-\Gamma t} \left[\frac{1}{2}r_{D}^{2} \left(\cosh(y\Gamma t) + \cos(x\Gamma t) \right) \right]_{\substack{neglected before}{neglected before}} x \equiv \Delta m/\Gamma \qquad y$$

dimensionless parameters O(1%)

$$\frac{D^{0} \to K^{+} \pi^{-}}{\overline{D}^{0} \to K^{+} \pi^{-}} \simeq r_{D}^{2} + r_{D} \left(y \cos \delta_{D} - x \sin \delta_{D}\right) \left(\frac{t}{\tau}\right) + \frac{1}{T}$$

Malcolm John - University of Oxford

R =

Candidates p

15

 $M(D^0\pi^+)$ [MeV/ c^2]

 $M(D^0\pi^+)$ [MeV/ c^2]

 $\equiv \Delta \Gamma / 2\Gamma$

$$\frac{y^2 + x^2}{4} \left(\frac{t}{\tau}\right)^2$$

for precision *x* & *y*

Bin-flip method with $D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$

Malcolm John - University of Oxford

Method: Phys. Rev. D99 (2019) 012007 BESIII: Phys. Rev. D101 (2020) 112002 LHCb: Phys. Rev. Lett. 127, (2021) 111801

Use charge-conjugate multi-body decay. Subdivided into bins with a variety of δ_D (called X_b here) Measure the relative phases between bin +*b* and –*b*, X_b using quantum-correlated $D^0\overline{D}^0$ pairs in a $e^+e^- \rightarrow \psi(3770)$ dataset (\bigstar). At LHCb, measure time-dependent "DCS" ratio R_h in each bin-pair.

Observation of the neutral charm Δm

Formalism expanded and generalised to include the binning scheme and *CP* violation

$$R_{bj}^{\pm} \approx \frac{r_b + r_b \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}{1 + \frac{\langle t^2 \rangle_j}{4} |z_{CP} = \frac{\langle t^2 \rangle_j}{4}}$$

 $z_{CP} \pm \Delta z \equiv -\left(q/p\right)^{\pm 1} \left(y + ix\right)$

Method: Phys. Rev. D99 (2019) 012007 BESIII: Phys. Rev. D101 (2020) 112002 LHCb: Phys. Rev. Lett. 127, (2021) 111801

 $r_b = R_{bi}$ at t = 0

 $\pm \Delta z |^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]$

 $\pm \Delta z |^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]$

 $X_b = \exp(i\delta_D(b))$ where $\delta_D(b)$ is the strong-phase difference between +*b* and –*b*

 $x \equiv \Delta m / \Gamma$ $y \equiv \Delta \Gamma / 2\Gamma$

dimensionless parameters O(1%)

$$\begin{aligned} R_{bj}^{\pm} &\approx \frac{r_b + r_b \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{\langle t^2 \rangle_j}{4} |z_{CP} = 0 \\ \text{litz bin } b \text{ and } 1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} = 0 \\ \text{y-time bin } j \end{aligned}$$

Malcolm John - University of Oxford

Lepton/Photon, January 2022

13

Summer 2021

New global combination

 $|q/p| - 1 = -0.005 \pm 0.016$ $\arg(q/p) = (-2.5 \pm 1.2)^{\circ}$

Malcolm John - University of Oxford

Time dependant CPV in charm $A_{CP}(f,t) \equiv \frac{\Gamma(D^0 \to f,t) - \Gamma(\overline{D^0} \to f,t)}{\Gamma(D^0 \to f,t) + \Gamma(\overline{D^0} \to f,t)} \approx a_f^d + \Delta Y_f \frac{t}{\tau_{D^0}}$

• Lifetime asymmetry of D^0 and \overline{D}^0 to a *CP* eigenstate, $f = K^+K^-$, $\pi^+\pi^-$ expected to be $\mathcal{O}(10^{-5})$

slope measurement only

 $\Delta Y_f \approx -\frac{\Gamma_{D^0 \to f} - \Gamma_{\overline{D}^0 \to f}}{\hat{\Gamma}_{D^0 \to f} + \hat{\Gamma}_{\overline{D}^0 \to f}}$

Asymmetry of the effective decay widths

Malcolm John - University of Oxford

Observation of a direct CP violating effect in charm

Achieved using a difference method to cancel common systematics

$$\Delta A_{CP} \equiv A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-})$$

$$\approx \Delta a_{CP}^{\text{dir}} + \frac{\Delta \langle t \rangle}{\tau_{D^{0}}} \Delta Y$$
Hominates
$$\approx + 3 \times 10^{-5}, \text{ with earlier } \Delta Y \text{ result}$$

Using both $D^{*+} \to D^0 \pi^+$ (top) and $B^- \to D^0 \mu^- \nu$ self-tagging sources of D^0 decays,

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

5.3σ from zero

To be determined if *KK* or $\pi\pi$ or neither are consistent with zero

Malcolm John - University of Oxford

Other direct CPV searches with charm Belle dataset (0.98 ab⁻¹) used to improve branching fractions and search for *CP* asymmetries With D^0 mesons, With D_s^+ mesons,

 $D^0 \rightarrow \pi^+ \pi^- \eta$ shown. $(Q \equiv \Delta m)$

 $A_{CP}(D^0 \to \phi \eta) = [-1.9 \pm 4.4 \,(\text{stat}) \pm 0.6 \,(\text{syst})]\%$. **728 events**

All consistent with zero

Malcolm John - University of Oxford

Belle: JHEP 2021, 75 Belle: Phys. Rev. D 103, 112005

 $D_s^+ \to \pi^+ \eta$ shown.

CPV search with $D^+ \to \pi^+ \pi^0$

Belle: 6.6k events (0.92 ab^{-1})

LHCb: JHEP 06 (2021) 019

Belle: Phys. Rev. D 97, 011101 (2018)

- Final state should symmetric in flavour.
- So must be a I = 2 as $I_3 = 1$.

• Thus $\Delta I = \frac{3}{2}$. ($\Delta I = \frac{1}{2}$ in W^+ exchange)

- $\Delta I = 1$ in gluon line would be a flavour change, so second diagram forbidden. So one set of CKM factors contributes.
- Thus: zero *CP* violation.

Very challenging reconstruction for LHCb. Trick: use $\pi^0 \rightarrow \gamma e^+ e^-$, including conversions

LHCb 26k events (6 fb^{-1})

Malcolm John - University of Oxford

- LHCb now provide new information with 16.7k events. $A_{CP}(B^+ \to K^+ \pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003$
- First measurement of $A_{K^0\pi^0}$ by Belle II

Belle II predict $\sigma(A_{K^0\pi^0})$ reach 0.025 with 50 ab⁻¹

Progress likely to be dominated by Belle II

Malcolm John - University of Oxford

Unitarity triangle, β , γ

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 - \lambda^4/8 \\ -\lambda & 1 - \lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 - \lambda^2 \end{pmatrix}$$

Length constrained by measurements of semileptonic $b \rightarrow u$ decays and QCD calculations

Malcolm John - University of Oxford

$sin 2\beta$: world average

Malcolm John - University of Oxford

 $\phi_s = -2\beta_s$: the *CP*-violating phase of B_s^0 mixing • β_s is analogous to β but is much smaller in the SM due to smallness of the complex phase in V_{ts} LHCb/ATLAS/CMS use time-dependent analysis of $B_s \to J/\psi (K^+K^-)_{\phi}$ (LHCb also $B_s \to J/\psi \pi^+\pi^-$)

Exp.	Mode	Dataset	$\phi^{car{c}s}_s$	$\Delta\Gamma_s \ (\mathrm{ps}^{-1})$	<u> </u>	
CDF	$J\!/\psi\phi$	$9.6{ m fb}^{-1}$	[-0.60, +0.12], 68% CL	$+0.068\pm 0.026\pm 0.009$		
D0	$J\!/\!\psi\phi$	$8.0{ m fb}^{-1}$	$-0.55\substack{+0.38\\-0.36}$	$+0.163^{+0.065}_{-0.064}$		
ATLAS	$J\!/\!\psi\phi$	$4.9{ m fb}^{-1}$	$+0.12 \pm 0.25 \pm 0.05$	$+0.053\pm 0.021\pm 0.010$	Ő	
ATLAS	$J\!/\!\psi\phi$	$14.3{ m fb}^{-1}$	$-0.110 \pm 0.082 \pm 0.042$	$+0.101\pm 0.013\pm 0.007$		
ATLAS	$J/\psi\phi$	$80.5{ m fb}^{-1}$	$-0.081\pm0.041\pm0.022$	$+0.0607\pm0.0047\pm0.0043$	<u> </u>	Δ
ATLAS	above 3 combi	ined (99.7fb^{-1})	$-0.087 \pm 0.036 \pm 0.021$	$+0.0657\pm0.0043\pm0.0037$		υ.
CMS	$J\!/\!\psi\phi$	$19.7{ m fb}^{-1}$	$-0.075\pm0.097\pm0.031$	$+0.095\pm0.013\pm0.007$	\triangleleft	
CMS	$J/\psi\phi$	$96.4\mathrm{fb}^{-1}$	$-0.011\pm 0.050\pm 0.010$	$+0.114\pm0.0014\pm0.0007$		
CMS	above 2 combin	ned (116.1fb^{-1})	$-0.021\pm 0.044\pm 0.010$	$+0.1032\pm0.0095\pm0.0048$		
LHCb	$J/\psi K^+K^-$	$3.0{ m fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805\pm0.0091\pm0.0032$		
LHCb	$J/\psi\pi^+\pi^-$	$3.0{ m fb}^{-1}$	$+0.070\pm 0.068\pm 0.008$	—		0
LHCb	$J/\psi K^+K^{-a}$	$3.0{ m fb}^{-1}$	$+0.119\pm0.107\pm0.034$	$+0.066\pm 0.018\pm 0.010$		Ο.
LHCb	$\psi(2S)\phi$	$3.0{ m fb}^{-1}$	$+0.23^{+0.29}_{-0.28}\pm0.02$	$+0.066^{+0.41}_{-0.44}\pm0.007$		
LHCb	$D_s^+ D_s^-$	$3.0{ m fb}^{-1}$	$+0.02 \pm 0.17 \pm 0.02$	_		
LHCb	$J\!/\!\psi\pi^+\pi^-$	$1.9{ m fb}^{-1}{}^{b}$	$-0.057\pm0.060\pm0.011$	—		
LHCb	$J/\psi K^+K^-$	$1.9{ m fb}^{-1}{}^{b}$	$-0.083 \pm 0.041 \pm 0.006$	$+0.077\pm0.008\pm0.003$		
LHCb	abo	ove 7 combined	$-0.042 \pm 0.025 ({ m tot})$	$+0.0813 \pm 0.0048 (tot)$		0.
All combined			-0.050 ± 0.019	$+0.082 \pm 0.005$		• •
		1				

^a $m(K^+K^-) > 1.05 \text{ GeV}/c^2$. ^b Run 2.

HFLAV: $\phi_{\rm s} = -0.050 \pm 0.019$

SM: $-2\beta_{\rm s} = -0.037 \pm 0.001$

Unitarity angle γ : ADS/GLW

The CP-violating phase in tree-level $b \rightarrow u \oplus b \rightarrow c$ transitions is γ . Negligible penguin/theory error

 γ not measured directly, but must be inferred along with other nuisance parameters, $r_B, \delta_B, \delta_D, r_D$

Malcolm John - University of Oxford

JHEP 04 (2021) 081

Gives rise to large, direct asymmetries $\Gamma(B^{\mp} \to [[f]_D h^{\mp}]_X) \propto (r_D^f)^2 + (r_B^X)^2 + 2r_D^f r_B^X \cos(\delta_B^X + \delta_D^f \mp \gamma)$

Unitarity angle $\gamma: K_{\varsigma}^{0}h^{+}h^{-}$

$$N_{+i}^{+} = h_{B^{+}} \left[F_{-i} + \left(\left(x_{+}^{DK} \right)^{2} + \left(y_{+}^{DK} \right)^{2} \right) F_{+i} + 2\sqrt{F_{i}F_{-i}} \left(x_{+}^{DK} \right)^{2} + h_{B^{+}} \right] \right] = h_{B^{+}} \left[F_{+i} + \left(\left(x_{+}^{DK} \right)^{2} + \left(y_{+}^{DK} \right)^{2} \right) F_{-i} + 2\sqrt{F_{i}F_{-i}} \left(x_{+}^{DK} \right)^{2} + h_{B^{-}} \right] \right] = h_{B^{-}} \left[F_{+i} + \left(\left(x_{-}^{DK} \right)^{2} + \left(y_{-}^{DK} \right)^{2} \right) F_{-i} + 2\sqrt{F_{i}F_{-i}} \left(x_{+}^{DK} \right)^{2} + h_{B^{-}} \right] \right] = h_{B^{-}} \left[F_{-i} + \left(\left(x_{-}^{DK} \right)^{2} + \left(y_{-}^{DK} \right)^{2} \right) F_{+i} + 2\sqrt{F_{i}F_{-i}} \right] \right]$$

$$x_{\pm}^{DK} \equiv r_B^{DK} \cos(\delta_B^{DK} \pm \gamma) \text{ and } y_{\pm}^{DK} \equiv r_B^{DK}$$

Malcolm John - University of Oxford

BESIII: Phys. Rev. D101 (2020) 112002 LHCb: JHEP 02 (2021) 169

Recent work at BESIII (\bigotimes) has ensured c_i , s_i systematics remain 'small' for LHCb throughout 2020s

Malcolm John - University of Oxford

Unitarity angle γ extracted in combination

• All $B \rightarrow DX$ results are combined with time-dependent charm results

B decay	D decay	Ref.	Dataset	Status since
				Ref. [24]
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+ h^-$	[27]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[28]	Run 1	As before
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[29]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[26]	Run 1&2	Updated
$B^{\pm} \to Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[30]	Run 1&2	Updated
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	[27]	Run 1&2	Updated
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+ h^-$	[31]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[31]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow D h^{\pm} \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	[32]	Run 1	As before
$B^0 \to DK^{*0}$	$D \rightarrow h^+ h^-$	[33]	Run $1\&2(*)$	Updated
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	New
$B^0 \to DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[34]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[35]	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	[36]	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[37]	Run 1&2	New
—	$D^0 \rightarrow h^+ h^-$	[38-40]	Run 1&2	New
_	$D^0 \rightarrow h^+ h^-$	[41]	Run 1	New
—	$D^0 \rightarrow h^+ h^-$	[42 - 45]	Run 1&2	New
—	$D^0 \to K^+ \pi^-$	[46]	Run 1	New
—	$D^0 \to K^+ \pi^-$	[47]	Run $1\&2(*)$	New
_	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	[48]	Run 1	New
_	$D^0 \rightarrow K^0_{ m S} \pi^+ \pi^-$	[49, 50]	Run 1&2	New
_	$D^0 \to K^0_{\rm S} \pi^+ \pi^-$	[51]	Run 1	New

Malcolm John - University of Oxford

 $-40 \begin{bmatrix} LHCb: \\ UTFit: 2018 update \\ 0.8 CKMFitter: 2019 update \end{bmatrix}$

$$\gamma = (65.4^{+3}_{-4})$$

CKMfitter expectation $(65.7 + 0.9)^{\circ}_{-2.7})^{\circ}$ UTFit expectation $(65.8 \pm 2.2)^{\circ}$

CP violation and mixing in charm and beauty hadrons Conclusion

- LHCb is delivering a wealth of measurements on heavy-flavour CP violation and mixing
- All major results are compatible with the SM expectation
- But the search goes on. LHCb upgrade will provide a factor 5-10 more statistics
- And BelleII aims to improve B-factory statistics by a factor ~50
- No time to be playing football in the park.

LS LOWRY, Peel Park, Salford (1944)

30th International Symposium on Lepton Photon Interactions at High Energies. Manchester, 10-14 January 2022

