

A High-Granularity Timing Detector for the ATLAS Phase-II upgrade

Poster prize talk 1

High Luminosity LHC (HL-LHC)

- HL-LHC is foreseen to start running in ~ 2028.
- Instantaneous Luminosity: $L \approx 7.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- Integrated Luminosity (10 years): $L \approx 4000 \text{ fb}^{-1}$
- Up to 200 p-p interactions per bunch crossing.

ATLAS Phase-II upgrade from 3-D to 4-D tracking system (ITK+HGTD)

To mitigate the high pileup effect, the ATLAS detector will be upgraded: ITK+HGTD

ITK (Inner Tracker)

- Extended pseudorapidity: $|\eta| = 4.0$
- Better position resolution on tracks in the central than in the forward region.

HGTD (High Granularity Timing Detector)

- Two instrumented double-sided layers, silicon-based technology, 75 mm-thick, built in three ring layout mounted in two cooling disks in the gap region between the barrel and the end-cap calorimeter.
- High-precision time measurement: 30
 50 ps time resolution per track.
- Assign time to each track in the forward region: $2.4 < \eta < 4.0$
- Improve pileup rejection and correct track-to-vertex association.

Hybrid bare module: 2 LGADs bump bonded to 2 ASICs.

Low Gain Avalanche Diode (LGAD)

- n-p Si detector with an additional thin ($<5 \mu m$) and highly doped 10^{16} p-type multiplication layer with a high E field providing an excellent time resolution: <30 ps before irradiation.
- HGTD prototypes are produced by CNM (Spain), HPK (Japan), FBK (Italy) and NDL (China).

- ▶ Pad size of 1.3×1.3 mm², 5 μ m thickness ensures:
- Small dead areas between pads.
- Low sensor capacitance.
- Configurable in arrays.

HGTD Front-End Electronics

► Signal from each LGAD will be read out using the ATLAS LGAD Timing Readout Chip (ALTIROC) ASIC: Integrated chip 2 × 2 cm²

Design	Requirements	Utility
 Readout 	• $\sigma_t < 25 \ ps$	 Digitised
Channel=	• Threshold: 2	measurement
Analogue(Prea	fC.	of TOA and
mplifiers, Time	Minimise	TOT
Of Arrival	noise and	• TOT
TOA, Time	power	correction
Over Threshold	consumption	minimises σ_{walk}
TOT CFD) +		contribution
Digital (data		to
buffer and		Hit counting
transmission).		for luminosity
		measurements

Radiation Hardness

- Radiation tolerance: $2.5 \times 10^{15} \text{Neq/cm}^2$, 2MGy
- The operating voltage in each HGTD section has to be increased to compensate for the radiation damage.

- The sudden changes at 2000 fb-1, 3000 fb-1 and 4000 fb-1 are due to the replacement of the inner and middle rings.
- Time resolution σ_t improves after the rings replacements.

Performance measurements of LGAD sensors

Laboratory

 Sr^{90} is used to characterise the LGAD response to minimum ionising particles (2 MeV electrons).

Better than 70 ps time resolution is obtained at 4 fC for all the sensors at different fluences.

Test Beam

Data collected with 120 GeV pion beam (CERN SPS) and 5 GeV electron beam (DESY).

Hit efficiency defined as hits on sensor with > 2 fC. Response is $\sim 100\%$ in the active area.

At higher bias voltages, all sensors satisfy the HGTD requirements.

HGTD physics enhancement

Simulation results have shown good object reconstruction and physics performance by adding HGTD to ITK:

Pileup-jet rejection:

• increases by a factor of 1.4 (for 85% efficiency)

Lepton isolation:

- Efficiency increases up to 25 %.
- HGTD removes majority of pileup deterioration

Summary

- HGTD is expected to start data taking in 2028 and will be the first large-scale application of LGAD technology to highly reduce pileup in the forward region of the ATLAS detector during the HL-LHC physics program.
- LGADs and their readout ALTIROCs are optimised to reach a $\sigma_t < 50$ ps per track up to the end of lifetime.
- Measurements of LGAD sensors from laboratory and test beams have shown promising results.
- Simulations have shown great improvement in HL-LHC physics performance by adding the HGTD to the ITK.

Reference

ATLAS Collaboration. Technical design report: A high-granularity timing detector for the ATLAS phase-II upgrade. Technical report, 2020. https://cds.cern.ch/record/2719855