A High-Granularity Timing Detector for the ATLAS Phase-II upgrade

Poster prize talk 1
High Luminosity LHC (HL-LHC)

- HL-LHC is foreseen to start running in ~ 2028.
- Instantaneous Luminosity: $L \approx 7.5 \times 10^{34}\text{cm}^{-2}\text{s}^{-1}$
- Integrated Luminosity (10 years): $L \approx 4000\text{ fb}^{-1}$
- Up to 200 p-p interactions per bunch crossing.

Pileup: one of the main experimental challenges during HL-LHC

Difficult to well separate pile-up jets from Hard scatter jet

Integrated Luminosity (10 years): $L \approx 4000\text{ fb}^{-1}$
To mitigate the high pileup effect, the ATLAS detector will be upgraded: ITK+HGTD

<table>
<thead>
<tr>
<th>ITK (Inner Tracker)</th>
<th>HGTG (High Granularity Timing Detector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Extended pseudo-rapidity: $</td>
<td>\eta</td>
</tr>
<tr>
<td>* Better position resolution on tracks in the central than in the forward region.</td>
<td>* High-precision time measurement: 30 - 50 ps time resolution per track.</td>
</tr>
<tr>
<td></td>
<td>* Assign time to each track in the forward region: $2.4 < \eta < 4.0$</td>
</tr>
<tr>
<td></td>
<td>* Improve pileup rejection and correct track-to-vertex association.</td>
</tr>
</tbody>
</table>

Hybrid bare module: 2 LGADs bump bonded to 2 ASICs.
Low Gain Avalanche Diode (LGAD)

- n-p Si detector with an additional thin (<5 µm) and highly doped 10^{16} p-type multiplication layer with a high E field providing an excellent time resolution: <30 ps before irradiation.
- HGTD prototypes are produced by CNM (Spain), HPK (Japan), FBK (Italy) and NDL (China).

Pad size of 1.3×1.3 mm2, 5 µm thickness ensures:
- Small dead areas between pads.
- Low sensor capacitance.
- Configurable in arrays.

HGTD Front-End Electronics

- Signal from each LGAD will be read out using the ATLAS LGAD Timing Readout Chip (ALTIROC) ASIC: Integrated chip 2×2 cm2
- Design
 - Readout Channel=
 - Analogue(Preamplifiers, Time Of Arrival TOA, Time Over Threshold TOT CFD) +
 - Digital (data buffer and transmission).
- Requirements
 - $\sigma_t < 25$ ps
 - Threshold: 2 fC.
 - Minimise noise and power consumption
 - Digitised measurement of TOA and TOT
 - TOT correction minimises σ_{walk} contribution to
 - Hit counting for luminosity measurements
- Utility
 - σ_t<25 ps
 - Threshold: 2 fC.
 - Minimise noise and power consumption
 - Digitised measurement of TOA and TOT
 - TOT correction minimises σ_{walk} contribution to
 - Hit counting for luminosity measurements

Radiation Hardness

- Radiation tolerance: 2.5×10^{15}Neq/cm2, 2MGy
- The operating voltage in each HGTD section has to be increased to compensate for the radiation damage.

The sudden changes at 2000 fb$^{-1}$, 3000 fb$^{-1}$ and 4000 fb$^{-1}$ are due to the replacement of the inner and middle rings.
- Time resolution σ_t improves after the rings replacements.
Performance measurements of LGAD sensors

Laboratory

90Sr is used to characterise the LGAD response to minimum ionising particles (2 MeV electrons).

Scanout boards

3D printed support

Better than 70 ps time resolution is obtained at 4 fC for all the sensors at different fluences.

Test Beam

Data collected with 120 GeV pion beam (CERN SPS) and 5 GeV electron beam (DESY).

- Hit efficiency defined as hits on sensor with > 2 fC. Response is ~100% in the active area.
- At higher bias voltages, all sensors satisfy the HGTD requirements.

HGTD physics enhancement

Simulation results have shown good object reconstruction and physics performance by adding HGTD to ITK:

- Pileup-jet rejection:
 - increases by a factor of 1.4 (for 85% efficiency)
- Lepton isolation:
 - Efficiency increases up to 25 %.
 - HGTD removes majority of pileup deterioration
Summary

• HGTD is expected to start data taking in 2028 and will be the first large-scale application of LGAD technology to highly reduce pileup in the forward region of the ATLAS detector during the HL-LHC physics program.

• LGADs and their readout ALTIROCs are optimised to reach a $\sigma_t < 50$ ps per track up to the end of lifetime.

• Measurements of LGAD sensors from laboratory and test beams have shown promising results.

• Simulations have shown great improvement in HL-LHC physics performance by adding the HGTD to the ITK.

Reference