Measurements of the R value at BESIII

Dong Liu (on behalf of BESIII Collaboration)

Helmholtz Institute Mainz

GSI Helmholtzcentre for Heavy Ion Research GmbH

University of Science and Technology of China

LeptonPhoton 2021 (online)

Jan. 10-14, 2022
Motivation

- Definition of R value

\[R \equiv \frac{\sigma^0(e^+ e^- \rightarrow \text{hadrons})}{\sigma^0(e^+ e^- \rightarrow \mu^+ \mu^-)} \equiv \frac{\sigma^0_{\text{had}}}{\sigma^0_{\mu\mu}} \]

- Determination of running coupling constant of QED theory

\[\alpha \equiv \frac{\alpha_0}{1 - \Delta\alpha}, \quad \Delta\alpha(s) = \Delta\alpha(s)_{\text{lep}} + \Delta\alpha(s)_{\text{had}} \]

\[\Delta\alpha(M_Z^2) = -\frac{\alpha(0)M_Z^2}{3\pi} \text{Re} \int_4 M_Z^2 \frac{ds}{s(s-M_Z^2-i\epsilon)} R(s) \]

- Anomalous magnetic moment of muon \(g_\mu - 2 \)

\[a_\mu = \frac{g_\mu - 2}{2}, \quad a_\mu^{\text{SM}} = a_\mu^{\text{QED}} + a_\mu^{\text{weak}} + a_\mu^{\text{had}} \]

\[a_\mu^{\text{had}} = \left(\frac{\alpha m_\mu}{3\pi}\right)^2 \int_4 m_\mu^2 \frac{ds}{s^2} K(s) R(s) \]

\[\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}}, \quad 4.2\sigma \rightarrow \text{new physics} \]

LP2021: R value at BESIII
BESIII

- **Beam energy:** 1.0 – 2.475 GeV
- **Luminosity:** 1×10^{33} cm$^{-2}$s$^{-1}$
- **Optimum energy:** 1.89 GeV

- **CsI crystal, $\Delta E/E = 2.5\%$ @1 GeV**
- $\sigma_T = 100$ ps barrel, 65 ps endcaps
- $\sigma_p/p = 0.5\%$ @1 GeV, $\sigma_{dE/dx} = 6\%$

BEPCII

- **Muon ID:** RPCs

Linac
In experiment:

\[R = \frac{N_{\text{had}}^{\text{obs}} - N_{\text{bkg}}}{\mathcal{L}_{\text{int}} \varepsilon_{\text{had}} \varepsilon_{\text{trig}} (1 + \delta) \sigma_{\mu \mu}^0} \]

- \(N_{\text{had}}^{\text{obs}} \): numbers of observed hadronic events
- \(N_{\text{bkg}} \): numbers of the residual background events
- \(\mathcal{L}_{\text{int}} \): integrated luminosity
- \(\varepsilon_{\text{had}} \): detection efficiency of hadronic events
- \(\varepsilon_{\text{trig}} \): trigger efficiency
- \((1 + \delta) \): ISR correction factor
- \(\sigma_{\mu \mu}^0 \): leading order QED cross section

\[e^+ e^- \rightarrow \mu^+ \mu^- \]
- Development of JETSET for low E experiments
- Both continuum and resonance states
- Kinematics of initial hadrons determined by Lund Area Law
- Phenomenological parameters should be tuned
- Integrated the Initial-state radiation (ISR) and Vacuum Polarization (VP)
Hybrid MC

- R value: sum of hadronic processes
 - Good consistence below 2 GeV
 - Incomplete measurements above 2 GeV
- Hybrid model as an alternative model
 - ConExc + Phokhara + LUARLW
 - Phokhara: 10 modes
 \[\text{[Phys.Rev.D90, 114021]} \]
 - ConExc: 47 modes
 \[\text{[Chin.Phys.C40, 113002]} \]
 - LUARLW: unknown processes
- Difference with LUARLW: < 2.3%

+: cross section from R-value measurement
+: Sum of exclusive cross section (76 modes)
MC vs Data

- Comparison of MC and data (@3.4 GeV)
 - Data (black dot) are well reproduced by tuned LUARLW MC (red histogram)

- Number of charged tracks
 - Number of isolated photons in 2-prong events

- Angular distribution of charged tracks
- Deposit energy / momentum
Sys. Uncertainties

• Based on experimental technique:

\[
\left(\frac{\Delta R}{R} \right)_{sys} = \left(\frac{\Delta N}{N} \right)^2 + \left(\frac{\Delta L_{int}}{L_{int}} \right)^2 + \left(\frac{\Delta \varepsilon_{had}}{\varepsilon_{had}} \right)^2 + \left(\frac{\Delta \varepsilon_{trig}}{\varepsilon_{trig}} \right)^2 + \left(\frac{\Delta (1 + \delta)}{(1 + \delta)} \right)^2
\]

where \(N = N_{had}^{obs} - N_{bkg} \)

– Event selection: vary selection criteria, <0.8%

– Background estimation: different methods and background simulation model

– Integrated luminosity: quote the uncertainty in luminosity measurement, 0.8%

– Signal simulation: hybrid model as a cross check, <2.3%

– Trigger efficiency: approaches 100% with an uncertainty less than 0.1%

– ISR correction factor: considered in calculation precision, <1.3%
Summary

- Significant process of R measurement: MC tuning, simulation checking, ...
- Both LUARLW and Hybrid MC can describe data well
- R values obtained in (2.2, 3.7) GeV
- Good accuracy of R value: <3.0%
- Whole R program will cover a wide energy range: 2.0 - 4.9 GeV

arXiv 2112.11728 (submitted to PRL)