

Combination of searches for resonant and non-resonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$, $b\bar{b}\tau^+\tau^-$, and $b\bar{b}b\bar{b}$ decay channels with the ATLAS detectors

Chi Lung Cheng (University of Wisconsin-Madison)
On behalf of the ATLAS collaboration

Introduction

What are we looking for?

• In the Standard Model (SM), the Higgs boson (H) can self-interact and results in the simultaneous production of two Higgs bosons (HH). The HH production is a very rare process with a SM predicted cross—section three orders of magnitude smaller than the single Higgs production.

I. Non-resonant HH production

• The dominant SM HH production mode is the gluon–gluon fusion (ggF) process with a cross–section of 31.05 fb at 13 TeV with m_H =125 GeV. The next leading production mode proceeds with the vector boson fusion (VBF) with a cross–section of 1.726 fb.

• The SM ggF and VBF productions are referred to as the non-resonant HH production. They provide a direct probe of the Higgs trilinear self-coupling ($\kappa_{\lambda} = \lambda_{HHH}/\lambda_{SM}$), which affects the HH production cross-section. A deviation from the SM predicted self-coupling value may point to physics Beyond the Standard Model (BSM).

II. Resonant HH production

- *HH* production can be mediated by a **heavy scalar (spin-0) resonance X** as predicted by several BSM models (e.g. hMSSM).
- For the resonant production, only the dominant ggF production mode is considered.

Combination input analyses

- ATLAS has released the HH combination result using the full Run 2 (139 fb⁻¹) dataset of pp collisions at \sqrt{s} =13 TeV.
- Statistically independent decay channels are combined to maximize sensitivity:

Non-resonant production: $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$ Resonant production: $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$

• $b\bar{b}b\bar{b}$: Largest branching ratio, but also largest SM background with tricky multi–jet background.

(Reference: ATLAS-CONF-2021-035)

- $bb\gamma\gamma$: Small branching ratio, but clean diphoton signature for triggering. (Reference: ATLAS-CONF-2021-016)
- $b\bar{b}\tau^+\tau^-$: Higher production rate than $b\bar{b}\gamma\gamma$ and lower background rates than $b\bar{b}b\bar{b}$. However, tau leptons can decay in many ways, making them sometimes tricky to identify. (Reference: ATLAS-CONF-2021-030)

Systematic Uncertainties

In the combination, common systematic sources are correlated across channels.

Source	Channels	Correlation
Luminosity	$b ar b au au + b ar b \gamma \gamma + b ar b b ar b$	Correlated
Pile-up	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Correlated
Electron	$b \overline{b} au au$	_
Muon	$b\overline{b} au au$	_
Tau	$b \overline{b} au au$	_
Photon	$b\overline{b}\gamma\gamma$	_
JES	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Correlated
JER	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Correlated
Boosted JES	$b \overline{b} b \overline{b}$	_
FTAG	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Partly Correlated
Boosted FTAG	$b \overline{b} b \overline{b}$	_
EGamma	$b \overline{b} au au + b \overline{b} \gamma \gamma$	Partly Correlated
MET	$bar{b} au au$	_
Parton shower	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Partly Correlated
PDF_{lpha}	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Correlated
QCD scale	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Correlated
Branching ratio	$bar{b} au au+bar{b}\gamma\gamma+bar{b}bar{b}$	Correlated

*Uncertainties with inconsistent definitions among channels are decorrelated

Results

Limit on non–resonant HH production

- The observed (expected) exclusion upper limits on the signal strength from $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ lie at 4.3 (3.9) and 4.6 (5.7) times the SM prediction individually, and goes down to 3.1 (3.1) when combined.
- Improved by a factor of three with respect to the previous ATLAS results using partial Run 2 dataset.

Constraints on κ_{λ}

- The cross–section upper limits on the nonresonant production are set as a function of the Higgs self–coupling modifier (κ_{λ}) . Exclusion on κ_{λ} is derived from the intersections with the theory prediction.
- The value of κ_{λ} has been excluded outside the range $-1.0 \le \kappa_{\lambda} \le 6.6$ ($-1.2 \le \kappa_{\lambda} \le 7.2$) in observation (expectation).

Limit on resonant HH production

- Upper limits are set on the production rates of the heavy scalar X decaying into Higgs boson pairs as a function of its mass m_X .
- The $b\bar{b}\gamma\gamma$ search is most sensitive at low m_X , the $b\bar{b}\tau^+\tau^-$ search is most sensitive in the 400–800 GeV range and the $b\bar{b}b\bar{b}$ search dominates for high m_X , demonstrating the complementary of these searches.

Reference: ATLAS-CONF-2021-052