Search for dijet resonances along with an isolated charged lepton at \(\sqrt{s} = 13 \, \text{TeV} \) pp collision with the ATLAS detector

Wasikul Islam*
*University of Wisconsin-Madison, USA
30th International Symposium on Lepton Photon Interactions at High Energies
10 to 14th January 2022

Motivation

Resonance search in the dijet invariant mass spectrum provides scopes to find BSM Physics.

The final state lepton provides many benefits:

- Sensitive to different physics and final states compared to inclusive searches.
- Overcome trigger limitations by using lepton as spectator object & cover a wide \(m_j \) range.
- Reduces QCD multijet background.

Along with model independent searches, following BSM models were probed:

- Sequential Standard Model (SSM)
- Technicolor Model
- Charged Higgs Model
- Simplified Dark Matter Model

Event and object selection

<table>
<thead>
<tr>
<th>Object</th>
<th>Type</th>
<th>pT</th>
<th>Eta (p)</th>
<th>Cleaning/Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Selection</td>
<td>pT > 60 GeV</td>
<td>(</td>
<td>n</td>
<td>< 1.37, 1.52 <</td>
</tr>
<tr>
<td>Muon Selection</td>
<td>pT > 60 GeV</td>
<td>(</td>
<td>n</td>
<td>< 2.7</td>
</tr>
<tr>
<td>Jet Selection</td>
<td>Anti-EMTopo EMTopo jets</td>
<td>pT > 20 GeV</td>
<td>(</td>
<td>n</td>
</tr>
</tbody>
</table>

- Overlap removal techniques applied between leptons & jets

Systematic uncertainties

Systematic uncertainties include those associated with the background fit, fit parameters, JES, JER, lepton systematics, PDF, scale, luminosity etc.

- The fit uncertainty extracted by fitting pseudo-experiments with an alternative 5p fit.
- Uncertainties on limits are not dominated by systematic uncertainties.
- Systematic uncertainties are also included as nuisance parameters.
- The combined effect from all systematic uncertainties leads to a 6% worsening of the limits.

Model specific limits

Limits set on BSM models:

- \(Z' \) in SSM excluded at 2 TeV.
- \(\tilde{t}_L \) in Technicolor excluded below 350 GeV.
- Charged Higgs excluded at 1.12 TeV (for \(\tan \beta = 0.5 \)).
- \(Z' \) in Simplified DM model excluded at 1.2 TeV (for leptophobic couplings \(g_\rho = 0.25, g_j = 0 \) and \(g_{\text{DM}} = 1 \)).

Background modeling studies

- Using full 139 fb\(^{-1} \) Run 2 dataset of ATLAS, search was conducted at the range: 0.22 TeV < \(m_{jj} \) < 6.3 TeV.
- Various single-electron/muon triggers with different \(p_T \) (muon), \(E_T \) (electron), quality, and isolation thresholds were used.
- Lowest unprescaled thresholds were \(p_T > 24 \) GeV for muon triggers, \(E_T > 26 \) GeV for electron triggers.
- Dominant sources of background modeled by MC are multijet (\(\geq 2 \) jets), \(tt \) and W+jets processes.

BumpHunter found no significant excess from null hypothesis.
- Largest deviation at \(m_j = 1.3 \) TeV, with global \(p\text{-value} = 0.305 \), corresponding to \(Z \)-value = 0.5a.
- Based on the studies of the control regions, background-only hypothesis for the signal region is constructed over the \(m_{jj} \) search range.

Conclusions

- Searched for resonance in \(m_j \) in events with at least two jets and one isolated lepton using full Run 2 dataset – Found no significant excess.
- Set limits on Gaussian-approximated signals – limits range from 50 fb to 0.1 fb in the 0.25 - 6 TeV mass range.
- 3 and 4 body invariant mass distributions constructed from jets and leptons on same strategy can also extend and complement the results of some of the shown BSM physics scenarios.

Reference: