

Search for dijet resonances along with an isolated charged lepton at $\int s=13$ TeV pp collision with the ATLAS detector

Wasikul Islam* *University of Wisconsin-Madison, USA

The final state lepton provides many benefits :

- Sensitive to different physics and final states compared to inclusive searches
- Overcome trigger limitations by using lepton as spectator object & cover a wide m_{ii} range
- Reduces QCD multijet background

Along with model independent searches, following BSM models were probed:

- Sequential Standard Model (SSM)
- **Technicolor Model**
- Charged Higgs Model
- Simplified Dark Matter Model

Event and object selection

• Using full 139 fb-1 Run 2 dataset of ATLAS, search was conducted at the range : $0.22 \text{ TeV} < m_{ii} < 6.3 \text{ TeV}$

• Various single-electron/muon triggers with different p_T (muon), E_T (electron), quality, and isolation thresholds were used

• Lowest unprescaled thresholds were $p_T > 24$ GeV for muon triggers,

 $E_{T} > 26$ GeV for electron triggers.

• Dominant sources of background modeled by MC are multijet (≥ 2 jets), tt and W+jets processes

Background modeling studies

• The LE-CR contains an order of magnitude more events than MC-CR

5p fit function : $(x \equiv m_{ii}/\sqrt{s})$ $f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x + p_5 \ln^2 x}$

• Based on the studies of the control regions, background-only hypothesis for the signal region is constructed $f(x)^{alt} = p_1(1-x)^{p_2} x^{p_3 + p_4 \ln x + p_5/\sqrt{x}}$ over the m_{ii} search range

Object	Туре	pT	Eta (η)	Cleaning/isolation
Electron Selection		pT > 60 GeV	n < 1.37, 1.52 < n < 2.47	Calo-based isolation
Muon Selection		pT > 60 GeV	n < 2.7	Calo-based isolation
Jet Selection	Anti-kT0.4 EMTopo jets	pT > 20 GeV	n < 2.47	Jet cleansing

• Overlap removal techniques applied between leptons & jets

Systematic uncertainties

Systematic uncertainties include those associated with the background fit, fit parameters, JES, JER, lepton systematics, PDF, scale, luminosity etc.

- The fit uncertainty extracted by fitting pseudo-experiments with an alternative 5p fit
- Uncertainties on limits are not dominated by systematic uncertainties
- Systematic uncertainties are also included as nuisance parameters
- The combined effect from all systematic uncertainties leads to a 6% worsening of the limits

Model specific limits

Alternative 5p fit function :

Model independent results

- BumpHunter found no significant excess from null hypothesis
- Largest deviation at m_{ii} = 1.3 TeV, with global p-value = 0.305, corresponding to Z-value = 0.5σ

Conclusions

- Searched for resonance in m_{ii} in events with at least two jets and one isolated lepton using full Run 2 dataset - Found no significant excess
- Set limits on Gaussian-approximated signals limits range from 50 fb to 0.1 fb in the 0.25 - 6 TeV mass range
- 3 and 4 body invariant mass distributions constructed from jets and leptons on same strategy can also extend and complement the results of some of the shown BSM physics scenarios

- Limits set on BSM models :
- Z' in SSM excluded at 2 TeV
- πT in Technicolor excluded below 350 GeV
- Charged Higgs excluded at 1.12 TeV (for $tan\beta = 0.5$)
- Z' in Simplified DM model excluded at 1.2 TeV (for leptophobic
- couplings $g_q = 0.25$, $g_l = 0$ and $g_{DM} = 1$)

