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Abstract

I here discuss the THDMa, a type II two Higgs doublet model that is enhanced by an additional

pseudoscalar which serves as a portal to the dark matter sector containing a fermionic dark matter

candidate. I present a recent scan of the models parameter space where all parameters are allowed

to float freely, and discuss prospects for this model at future e+e− colliders for cases that are not

covered in standard THDM searches.
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I. INTRODUCTION

I discuss a new physics models that extends the Standard Model (SM) particle sector by

an additional scalar and provides a dark matter candidate. The models is confronted with

current theoretical and experimental constraints, including the minimization of the vacuum

as well as the requirement of vacuum stability and positivity. I also require perturbative

unitarity to hold, and perturbativity of the couplings at the electroweak scale.

From the experimental side, I include the agreement with current measurements of the

properties of the 125 GeV resonance discovered by the LHC experiments, as well as agree-

ment with the null-results from searches for additional particles at current or past colliders.

Furthermore, I consider bounds from electroweak precision observables (via S, T, U param-

eters), B-physics observables (B → Xs γ, Bs → µ+ µ−, ∆Ms), as well as agreement with

astrophysical observables (relic density and direct detection bounds). In my scan, I use a

combination of private and public tools; the latter include HiggsBounds [1], HiggsSignals

[2], SPheno [3], Sarah [4], micrOMEGAs [5, 6], and MadDM [7]. Experimental numbers

are taken from [8, 9] for electroweak precision observables, [10] for Bs → µ+ µ−, [11] for

∆Ms and [12] and [13] for relic density and direct detection, respectively. Bounds from

B → Xsγ are implemented using a fit function from [14, 15]. For predictions of production

cross sections I am using Madgraph5 [16].

II. THDMA

The THDMa is a type II two-Higgs-doublet model (THDM), extended by an additional

pseudoscalar a mixing with the ”standard” pseudoscalar A of the THDM. In the gauge-

eigenbasis, the additional field serves as a portal to the dark sector, where I consider a

fermionic dark matter candidate χ. This model has extensively been studied in light of

hadron colliders, and more details can e.g. be found in [17–24].

The model contains, besides the new scalars from the standard THDM, an additional

pseudoscalar and the dark matter candidate, leading to the following particle content:

h, H, H±, a,A, χ. It contains in 12 additional new physics parameters, which can be chosen

e.g. as

v, mh, mH ,ma,mA, mH± ,mχ; cos (β − α) , tan β, sin θ; yχ, λ3, λP1 , λP2 .

Here v and either mh or mH are fixed by current measurements in the electroweak sector.

I refer the reader to [23] for a more thorough discussion, including the concrete form of the

potential.

I here report on results of a scan that allows all of the above novel parameters float

in specific predefined ranges [23]. Due to the large number of free parameters, it is not

always straightforward to display bounds from specific constraints in 2-dimensional planes.

In some cases, however, displaying these in such setups is straightforward. Two examples
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are shown in figure 2. The first plot shows bounds in the (mH± , tan β) plane from B-physics

observables. The result is similar to a simple THDM, and shows that in general low masses

mH± . 800 GeV as well as values tan β . 1 are excluded. The second plot displays the relic

density as a function of the mass difference ma − 2mχ. Here, a behaviour can be observed

that is typical in many models with dark matter candidates: in the region where this mass

difference remains small, relic density annihilates sufficiently to stay below the observed relic

density bound, leading to a so-called ”funnel” region. Too large differences lead to values

Ωhc & 0.12 and therefore are forbidden from dark matter considerations.

Finally, it is interesting to consider which production cross-section values would still be

feasible for points that fulfill all constraints [23] at e+e− colliders. I concentrate on signatures

that include missing energy and therefore do not exist in a THDM without a portal to the

dark sector. Processes that include the lighter CP-even scalar, as e.g. e+e− → hA, ha are

supressed due to alignment, which makes e+e− → HA,Ha the most interesting channel that

contains novel signatures. Due to the interplay of B-physics and electroweak constraints,

such points typically have mass scales & 1 TeV. Therefore, the first interesting scenario are

production cross sections for an e+e− collider with a center-of-mass energy of 3 TeV. The

corresponding production cross sections are shown in figure 3. Here, I display predictions for

t t̄ t t̄ and t t̄+ /E final states using a factorized approach. There is a non-negligible number of

points where the second channel is dominant. A ”best” point with a large rate for t t̄+ /E⊥
has been presented in [23]:

sin θ = −0.626, cos (β − α) = 0.0027, tan β = 3.55

mH = 643 GeV, mA = 907 GeV, mH± = 814 GeV,

ma = 653 GeV, mχ = 277 GeV,

yχ = −1.73, λP1 = 0.18, λP2 = 2.98, λ3 = 8.63. (1)

For this point, all width/ mass ratios are . 6 %. In addition, branching ratios for various

final states as a function of the mass sum for the HA channel are given in figure 1.

III. CONCLUSION AND OUTLOOK

In this work, I presented a model that extend the particle content of the SM and also

provides a dark matter candidate. In particular, I defined signatures that do not exist in

models without dark matter candidates. I have presented production cross sections for var-

ious standard pair-production modes. A more dedicated investigation of the corresponding

signatures, including background simulation and cut optimization, is in the line of future

work.
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FIG. 1. Branching ratios into various final states for AH production, as a function of the mass

sum.
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FIG. 2. Left: Bounds on the (mH± , tanβ) plane from B-physics observables. The contour for low(
mH±, tanβ

)
values stems from [14, 15]. Right: Dark matter relic density as a function of ma−2mχ,

where mχ defines the color coding. The typical resonance-enhanced relic density annihilation is

clearly visible. Figures taken from [23].
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FIG. 3. Production cross sections for tt̄tt̄ (x-axis) and tt̄ + /E (y-axis) final state in a factorized

approach at 3 TeV center-of-mass energy. Left: mediated via HA, right: mediated via HA and

Ha intermediate states. Color coding refers to mH +mA (left) and mH + 0.5× (mA +ma) (right).

Figures taken from [23].
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