Structural Relations between Harmonic Sums up to w=6

Johannes Blümlein
 DESY

- Introduction
- Algebraic Relations
- Structural Relations
- Representation of some Observables
- Factorial Series
- The Basis
- Conclusions

1. Introduction

- Single scale processes in massless Quantum Field Theories, or being considered in the limit $m^{2} / Q^{2} \rightarrow 0$, exhibit significant simplifications when calculated in Mellin space.
- This is, to some extent, due to structure of Feynman parameter integrals which possess a Mellin symmetry.
- Harmonic sums form the appropriate language to derive compact expressions in the respective calculations.
- We will line out the relations of the harmonic sums, resp. their continuations to $N \in \mathbf{Q}, \mathbf{R}, \mathbf{C}$.

x-space results :

Nielsen-type integrals, resp. harmonic polylogarithms eE. Remiddionda . Vemmoseren (1999)

$$
S_{n, p, q}(x)=\frac{(-1)^{n+p+q-1}}{\Gamma(n) p!q!} \int_{0}^{1} \frac{d z}{z} \ln ^{(n-1)}(z) \ln ^{p}(1-z x) \ln ^{q}(1+z x)
$$

2 Loop Wilson Coefficients: x space

Order α_{s}^{2} contributions to the deep inelastic Wilson coefficient W.L. van Neerven and $\mathrm{E} . \mathrm{B} . \mathrm{Z}$ Zijstra
\qquad

```
Volume 272. number 1,2 PHYSICS LETTERS B 2 N November 1991
```

$C_{2}^{(2),(+)}(x, 1)=C_{F}^{2}\left[\frac{1+x^{2}}{1-x}\left\{4 \ln ^{3}(1-x)-(14 \ln x+9) \ln ^{2}(1-x)\right.\right.$
$-\left[4 \mathrm{~L}_{2}(1-x)-12 \ln ^{2} x-12 \ln x+165(2)+\frac{27}{2}\right] \ln (1-x)-\frac{4}{3} \ln ^{3} x-\frac{3}{2} \ln ^{2} x$
$-\left[4 \mathrm{Li}_{2}(1-x)-12 \ln ^{2} x-12 \ln x+165(2)+\frac{2}{2}\right] \ln (1-x)-\frac{4}{3} \ln \ln ^{3} x$
$+\left[-24 \mathrm{Li}_{2}(-x)+245(2)+\frac{1}{2}\right] \ln x+12 \mathrm{~L}_{3}(1-x)-12 S_{1.2}(1-x)$
$+\left[-24 \mathrm{Li}_{2}(-x)+24 \zeta(2)+\frac{11}{2}\right] \ln x+12 \mathrm{Li}_{3}(1-x)-$
$\left.+48 \mathrm{Li}_{3}(-x)-6 \mathrm{~L}_{2}(1-x)+32 \zeta(3)+18 \zeta(2)+\frac{5}{4}\right\}$
$\left.+48 \mathrm{Li}_{3}(-x)-6 \mathrm{Li}_{2}(1-x)+32 \zeta(3)+18 \zeta(2)+\frac{51}{4}\right\}$
$+(1+x)\left\{2 \ln x \ln ^{2}(1-x)+4\left[\mathrm{Li}_{2}(1-x)-\ln ^{2} x\right] \ln (1-x)\right.$
$\left.-4\left[\mathrm{Li}_{2}(1-x)+\xi(2)\right] \ln x+\frac{5}{3} \ln ^{3} x-4 \mathrm{Li}_{3}(1-x)\right\}$
$+\left(40+8 x-48 x^{2}-\frac{72}{5} x^{3}+\frac{8}{5 x^{2}}\right)\left[\mathrm{L}_{2}(-x)+\ln x \ln (1+x)\right]$
$+(-8+40 x)\left[\ln x \mathrm{Li}_{2}(-x)+S_{12}(1-x)-2 \operatorname{Li}_{3}(-x)-\zeta(2) \ln (1-x)\right]+(5+9 x) \ln ^{2}(1-x)$
$+\frac{1}{2}(-91+141 x) \ln (1-x)-(28+44 x) \ln x \ln (1-x)-(14+30 x) \mathrm{L}_{2}(1-x)$
$+\left(\frac{29}{2}+\frac{25}{2} x+24 x^{2}+\frac{35}{5} x^{3}\right) \ln 2 x+\frac{1}{10}\left(13-407 x+144 x^{2}-\frac{16}{x}\right) \ln x+\left(-10+6 x-48 x^{2}-\frac{72}{5} x^{3}\right) \zeta(2)$
$\left.+\frac{407}{20}-\frac{1911}{20} x+\frac{77}{5} x^{2}+\frac{8}{5 x}+\left[65(2)^{2}-78 \zeta(3)+695(2)+\frac{331}{8}\right] \delta(1-x)\right]$
$+C_{A} C_{F}\left[\frac{1+x^{2}}{1-x}\left\{-\frac{11}{3} \ln ^{2}(1-x)+\left[4 \mathrm{~L}_{2}(1-x)+2 \ln ^{2} x+\frac{44}{3} \ln x-4 \zeta(2)+\frac{36}{18}\right] \ln (1-x)\right.\right.$
$-\ln ^{3} x-\frac{55}{6} \ln ^{2} x+\left[4 \mathrm{Li}_{2}(1-x)+12 \mathrm{Li}_{2}(-x)-\frac{339}{6}\right] \ln x-12 \mathrm{~L}_{3}(1-x)+12 \mathrm{~S}_{12}(1-x)-24 \mathrm{~L}_{3}(-x)$
$\left.+\frac{22}{5} \mathrm{~L}_{2}(1-x)+2 \zeta(3)+\frac{2 \pi}{3} \zeta(2)-\frac{315 \zeta}{108}\right\}$
$+4(1+x)\left[\mathrm{Li}_{2}(1-x)+\ln x \ln (1-x)\right]+\left(-20-4 x+24 x^{2}+\frac{36}{5} x^{3}-\frac{4}{5 x^{2}}\right)\left[\mathrm{Li}_{2}(-x)+\ln x \ln (1+x)\right]$
$+(4-20 x)\left[\ln x \mathrm{Li}_{2}(-x)+S_{1,2}(1-x)-2 \mathrm{Li}_{3}(-x)-\zeta(2) \ln (1-x)\right]+\left(\frac{113}{6}-\frac{1113}{18} x\right) \ln (1-x)$
$+\left(-2+2 x-12 x^{2}-\frac{18}{5} x^{3}\right) \ln ^{2} x+\frac{1}{30}\left(13+1753 x-216 x^{2}+\frac{24}{x}\right) \ln x+\left(-2-10 x+24 x^{2}+\frac{36}{5} x^{3}\right) \zeta(2)$
$\left.-\frac{9887}{540}+\frac{5957}{540} x-\frac{36}{5} x^{2}-\frac{4}{5 x}+\left[\frac{17}{5} \zeta(2)^{2}+\frac{140}{3} \zeta(3)-\frac{251}{5} \zeta(2)-\frac{5655}{\frac{5}{2}}\right] \delta(1-x)\right]$
$+n_{f} C_{F}\left(\frac{1+x^{2}}{1-x}\left[\frac{2}{3} \ln ^{2}(1-x)-\left(\frac{8}{3} \ln x+\frac{29}{9}\right) \ln (1-x)-\frac{4}{3} \mathrm{Li}_{2}(1-x)+\frac{5}{3} \ln 2 x+\frac{10}{3} \ln x-\frac{4}{3} \zeta(2)+\frac{24}{54}\right]\right.$
$\left.+\frac{1}{3}(1+13 x) \ln (1-x)-\frac{1}{3}(7+19 x) \ln x-\frac{23}{18}-\frac{27}{2} x+\left[\frac{4}{3} \zeta(3)+\frac{38}{3} \zeta(2)+\frac{45}{36}\right] \delta(1-x)\right)$,
where C_{A}, C_{F} denote the colour factors and n_{n} stands for the number of flavours. Here we have put $\mu^{2}=Q^{2}$. The more general case $\left(\mu^{2} \neq Q^{2}\right)$ can be easily derived using renormalization group methods (see ref. [14]). In the
above expression the terms of the type $\ln ^{\prime}(1-x) /(1-x)$ have to be understood in the distributional sense $[12]$. above expression the ermss of the type ln (1-x), $1-x$) have to
The understood ant the distributiona sense the coefficient of the delta function can be derived from eq. (16) in ref. [13]. The second part in
(8) is given by

```
C}\mp@subsup{C}{2}{(2),G}(x,1)=\mp@subsup{n}{f}{}\mp@subsup{C}{f}{[}[8(1+x\mp@subsup{)}{}{2
```

$\times\left[-4 S_{1,2}(-x)-4 \ln (1+x) \mathrm{Li}_{2}(-x)-2 \zeta(2) \ln (1+x)-2 \ln x \ln ^{2}(1+x)+\ln ^{2} x \ln (1+x)\right]$ $+4(1-x)^{2}\left\{\frac{3}{8} \ln ^{3}(1-x)-\left(2 \ln x+\frac{12}{4}\right) \ln ^{2}(1-x)+\left[2 \mathrm{Li}_{2}(1-x)+2 \ln ^{2} x+4 \ln x+\frac{2}{2}\right] \ln (1-x)-\frac{5}{12} \ln ^{3} x\right.$ $\left.+\left[\mathrm{Li}_{2}(1-x)-4 \mathrm{Li}_{2}(-x)+3 \zeta(2)\right] \ln x-4 \mathrm{Li}_{3}(1-x)-S_{1,2}(1-x)+12 \mathrm{Li}_{3}(-x)+13 \zeta(3)+\frac{18}{2} \zeta(2)\right\}$ $+x^{2}\left\{\frac{10}{3} \ln ^{3}(1-x)-12 \ln x \ln ^{2}(1-x)+\left[16 \ln ^{2} x-16 \zeta(2)\right] \ln (1-x)-5 \ln ^{3} x\right.$
$\left.+\left[12 \mathrm{Li}_{2}(1-x)+205(2)\right] \ln x-8 \mathrm{Li}_{3}(1-x)+12 \mathrm{~S}_{12}(1-x)\right\}$
$+\left(48+\frac{64}{3} x+\frac{96}{5} x^{3}+\frac{8}{15 x^{2}}\right)\left[\mathrm{Li}_{2}(-x)+\ln x \ln (1+x)\right]+\left(14 x-23 x^{2}\right) \ln \ln ^{2}(1-x)$
$+\left(-12 x+10 x^{2}\right) \ln (1-x)+\left(-24 x+56 x^{2}\right) \ln x \ln (1-x)+64 x \mathrm{Li}_{3}(-x)+(-10+24 x) \mathrm{Li}_{2}(1-x)$
$+\left(-\frac{3}{2}+\frac{2 x}{3} x-36 x^{2}-\frac{48}{5} x^{3}\right) \ln ^{2} x+\frac{1}{15}\left(-236+339 x-648 x^{2}-\frac{8}{x}\right) \ln x+\left(64 x+36 x^{2}\right) 5(3)$
$\left.+\left(-\frac{20}{3} x+46 x^{2}+\frac{68}{5} x^{3}\right) \zeta(2)-\frac{649}{15}+\frac{239}{5} x-\frac{36}{5} x^{2}+\frac{8}{15 x}\right]$
$+n_{1} C_{A}\left\{4(1+x)^{2}\left[S_{1,2}(1-x)-2 \operatorname{Li}_{3}(-x)+4 S_{1,2}(-x)-2 \ln x \operatorname{Li}_{2}(1-x)+4 \ln (1+x) \mathrm{Li}_{2}(-x)\right.\right.$


```
    +8(1+2x+2\mp@subsup{x}{}{2})[L\mp@subsup{L}{3}{}(\frac{1-x}{1+x})-\mp@subsup{\textrm{Li}}{3}{}(-\frac{1-x}{1+x})-\operatorname{ln}(1-x)L\mp@subsup{L}{2}{2}(-x)-\operatorname{ln}x\operatorname{ln}(1-x)\operatorname{ln}(1+x)}
    +(-24+\frac{80}{3}\mp@subsup{x}{}{2}-\frac{16}{3x})[L\mp@subsup{\textrm{L}}{2}{}(-x)+\operatorname{ln}x\operatorname{ln}(1+x)]+\mp@subsup{x}{}{2}[-4\mp@subsup{S}{1,2}{2}(1-x)+16\mp@subsup{\textrm{Li}}{3}{}(-x)+8\operatorname{ln}x\mp@subsup{\textrm{Li}}{2}{2}(1-x)
```



```
+(-2+36x-\frac{122}{3}\mp@subsup{x}{}{2}+\frac{8}{3x})\mp@subsup{\operatorname{ln}}{}{2}(1-x)+(-4-32x+8\mp@subsup{x}{}{2})\mp@subsup{\operatorname{ln}}{}{2}x\operatorname{ln}(1-x)
+(8-144x+148\mp@subsup{x}{}{2})\operatorname{ln}x\operatorname{ln}(1-x)+(4+40x-8\mp@subsup{x}{}{2})\operatorname{ln}(1-x)\mp@subsup{\textrm{L}}{2}{}(1-x)
+(-20+24x-32\mp@subsup{x}{}{2})\zeta(2)\operatorname{ln}(1-x)+\frac{1}{9}(-186-1362x+1570\mp@subsup{x}{}{2}+\frac{104}{x})\operatorname{ln}(1-x)
+(-4-72x+8\mp@subsup{x}{}{2})\mp@subsup{\operatorname{Li}}{3}{}(1-x)+\frac{1}{3}(12-192x+176\mp@subsup{x}{}{2}+\frac{16}{x})\mp@subsup{\operatorname{Li}}{2}{}(1-x)+\frac{1}{3}(10+28x)\mp@subsup{\operatorname{ln}}{}{3}x
+(-1+88x-\frac{1994}{3}\mp@subsup{x}{}{2})\mp@subsup{\operatorname{ln}}{}{2}x+(-48x+16\mp@subsup{x}{}{2})\zeta(2)\operatorname{ln}x+(58+\frac{884}{3}x-\frac{2090}{9}\mp@subsup{x}{}{2})\operatorname{ln}x-(10+12x+12\mp@subsup{x}{}{2})\zeta(3)
+\frac{1}{3}(12-240x+268\mp@subsup{x}{}{2}-\frac{32}{x})5(2)+\frac{239}{9}+\frac{1027}{9}x-\frac{4083}{72}\mp@subsup{x}{}{2}+\frac{344}{27x}},

\section*{W.L. van Neerven et al.: 79 functions 80 objects would be maximal.}

\section*{2. Algebraic Relations}
cf. J.Blümlein, Comput. Phys. Commun. 159 (2004) 19
Number of harmonic sums up to weight w: \(3^{w-1}\)
Harmonic sums form a quasi-shuffle algebra through \(\amalg\). (m. Hoffman)
\[
\begin{aligned}
S_{a_{1}, a_{2}} \amalg S_{a_{3}, a_{4}}= & S_{a_{1}, a_{2}, a_{3}, a_{4}}+S_{a_{1}, a_{3}, a_{2}, a_{4}}+S_{a_{1}, a_{2}, a_{4}, a_{2}} \\
& +S_{a_{3}, a_{4}, a_{1}, a_{2}}+S_{a_{3}, a_{1}, a_{4}, a_{2}}+S_{a_{3}, a_{1}, a_{2}, a_{4}} \quad \text { etc. }
\end{aligned}
\]

Solve all the linear equations possible for the harmonic sums \(\Longrightarrow\) algebraic basis.
Let \(\{a, a, a, \ldots, b, b, \ldots, \ldots, z, z\}\) a set of \(n_{1} a^{\prime}\) s, \(n_{2} b^{\prime}\) s etc. The number of basis elements corresponding to all words formed by ALL the above letters is:
\[
l_{n}\left(n_{1}, \ldots, n_{q}\right)=\frac{1}{n} \sum_{d \mid n_{i}} \mu(d) \frac{(n / d)!}{\left(n_{1} / d\right)!\ldots\left(n_{d} / d\right)!}, \quad \sum_{i} n_{i}=n
\]
(E. Witt, 1937) \(\Longrightarrow\) \# Lyndon words
\begin{tabular}{l|r|r|r|r|r|r}
w & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(\#_{c}\) & 2 & 8 & 26 & 80 & 242 & 728 \\
\(\#_{r}\) & 0 & 1 & 7 & 23 & 69 & 183
\end{tabular}

\section*{Algebraic Relations}

\section*{Observation in Quantum Field Theory :}

At least up to \(O\left(\alpha_{s}^{3}\right)\) the contributing harmonic sums never exhibit any index \(a_{k}=-1\) applying a compact representation.

The number of sums of this type is
\[
\begin{aligned}
& N_{\neg\{-1\}}(w)=\frac{1}{2}\left[(1-\sqrt{2})^{w}+(1+\sqrt{2})\right] \\
& N_{\neg\{-1\}}^{\text {basic }}(\mathrm{w})=\frac{2}{\mathrm{w}} \sum_{d \mid \mathrm{w}} \mu\left(\frac{\mathrm{w}}{d}\right) N_{\neg\{-1\}}^{\text {basic }}(d) .
\end{aligned}
\]
\begin{tabular}{l|r|r|r|r|r|r}
\(w\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(\#_{c}\) & 1 & 4 & 11 & 28 & 69 & 168 \\
\(\#_{r}\) & 1 & 3 & 7 & 14 & 30 & 60
\end{tabular}

\section*{Algebraic Relations}

\section*{Side Remark:}

Harmonic, Generalized Harmonic Polylogarithms and Multiple Polylogarithms also form shuffle algebras. As shuffle algebras are sub-sets of the quasi-shuffle algebra studied above, the respective algebraic relations can be derived directly.
- Form the index alphabet.
- Solve the shuffle-relations \(\Longrightarrow\) Basis

As the relations in J.blimmein, Comput. Phys. Commun. 159 (2004) 19 are of arbitrary weight (general alphabet) and depth \(d \leq 6\) the corresponding relations can be read off there.

Algorithms to extend this scenario are available and can be run.

\section*{3. Structural Relations}
\[
\begin{aligned}
& \underline{\mathrm{W}=1:} \\
& \frac{1}{1-x} \& \frac{1}{1+x} \\
& \mathbf{M}\left[\left(\frac{1}{1-x}\right)_{+}\right]\left(\frac{N}{2}\right)=\mathbf{M}\left[\left(\frac{1}{1-x}\right)_{+}\right](N)+\mathbf{M}\left[\frac{1}{1+x}\right](N)+\ln (2) \\
&-\psi\left(\frac{N}{2}\right)-\gamma_{E}=-\psi(N)-\gamma_{E}+\beta(N)+\ln (2) \\
& \beta(N)=\frac{1}{2}\left[\psi\left(\frac{N+1}{2}\right)-\psi\left(\frac{N}{2}\right)\right]
\end{aligned}
\]
- \(S_{-1}(N)\) depends on \(S_{1}(N)\) for \(N \in \mathbf{Q}\)

\section*{Structural Relations}
\(\underline{N \in \mathbf{R}:}\)
\[
S_{2}(N)=-\frac{d}{d N} S_{1}(N)+\zeta_{2} \quad(\text { etc. })
\]

For \(N \in \mathbf{R}\) : only one independent single sum occurs.
\[
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)+\gamma_{E}
\]
\(\underline{w}=2:\)
\(\left.\left.\mathbf{M}\left[\frac{\ln (1-x)}{1+x}\right](N)=-\mathbf{M}\left[\frac{\ln (1+x)}{1+x}\right](N)-\left[\psi(N)+\gamma_{E}+\ln (2)\right] \beta\right) N\right)+\beta^{\prime}(N)\)
See also relations for Nielsen's \(\xi, \eta, \xi_{1}\) and \(\xi_{2}\) functions.
\[
F_{1}(N):=\mathbf{M}\left[\frac{\ln (1+x)}{1+x}\right](N) \rightarrow S_{1,-1}(N)
\]

\section*{Structural Relations}

The Reduction for \(\operatorname{Li}_{k}(-x) /(x \pm 1)\) :
\[
\frac{1}{2^{k-2}} \frac{\operatorname{Li}_{k}\left(x^{2}\right)}{1-x^{2}}=\frac{\operatorname{Li}_{k}(x)}{1-x}+\frac{\operatorname{Li}_{k}(x)}{1+x}+\frac{\operatorname{Li}_{k}(-x)}{1-x}+\frac{\operatorname{Li}_{k}(-x)}{1+x} \rightarrow \frac{\operatorname{Li}_{k}(-x)}{1-x}
\]
- There always exists another IBP relation to express also
\(\operatorname{Li}_{k}(-x) /(1+x)\)
- At even \(k\) there exists an algebraic relation which yields an additional relation for \(\operatorname{Li}_{k}(x) /(1+x)\).
- Applying differential operators one may show :

For \(N \in \mathbf{R}\) double harmonic sums can always be represented by one basic function for even weight and two basic functions for odd weight.
\(\underline{w}=3:\)
\[
\rightarrow \frac{\operatorname{Li}_{2}(x)}{x \pm 1}, \quad \frac{\ln ^{2}(1+x)}{x \pm 1}
\]

\section*{Structural Relations}
\(\underline{W}=4 ; i \neq-1, \rightarrow\)
\[
\frac{\operatorname{Li}_{3}(x)}{x+1}, \quad \frac{S_{1,2}(x)}{x \pm 1}
\]
\[
\underline{\mathrm{w}}=5 ; i \neq-1, \rightarrow
\]
\[
\frac{\mathrm{Li}_{4}(x)}{x \pm 1} \quad \frac{S_{1,3}(x)}{x+1} \quad \frac{S_{2,2}(x)}{x \pm 1} \quad \frac{\mathrm{Li}_{2}^{2}(x)}{x+1} \quad \frac{S_{2,2}(x)-\mathrm{Li}_{2}^{2}(x) / 2}{x \pm 1}
\]
\(\underline{w}=6 ; i \neq-1, \rightarrow\)
\[
\begin{array}{lllll}
\frac{\mathrm{Li}_{5}(x)}{x+1} & \frac{S_{3,2}(x)}{x \pm 1} & \frac{S_{2,3}(x)}{x \pm 1} & \frac{S_{1,4}(x)}{x \pm 1} & \frac{\operatorname{Li}_{2}(x) \operatorname{Li}_{3}(x)}{x \pm 1} \\
\frac{\mathrm{Li}_{2}(-x) \mathrm{Li}_{3}(-x)}{x-1} & \frac{S_{3,2}(-x)}{x-1} & \frac{A_{1}(x)}{x+1} & \frac{A_{1}(-x)}{x-1} & \frac{A_{2}(x)}{x+1},+\ldots
\end{array}
\]

\section*{Structural Relations}

New numerator functions:
\[
\begin{aligned}
& A_{1}(x)=\int_{0}^{x} \frac{d y}{y} \operatorname{Li}_{2}^{2}(y) \\
& A_{2}(x)=\int_{0}^{x} \frac{d y}{y}\left[\operatorname{Li}_{4}(1-y)-\zeta_{4}\right], \ldots
\end{aligned}
\]

\section*{Representation of some Observables}
- Unpolarized and Polarized Drell-Yan an Higgs-Boson Production Cross Section \(O\left(\alpha_{s}^{2}\right) \quad \mathrm{w}=4 \mathrm{~J}\)., and. v. Ravinditan, Nucl. Phys. B776 (2005) 128 .
- Unpolarized and Polarized Time-like Anomalous Dimensions and Wilson

- Anomalous Dimensions and Wilson Coefficients \(O\left(\alpha_{s}^{3}\right) \quad \mathrm{w}=5,6\) trom s. . . .och, J. Vermaseren, A. Vogt, Nucl. Phys. B688 (2004) 101; 691 (2004) 129; B724 (2005) \(3 \rightarrow\) J.B., DESY 07-042
- Polarized and Unpolarized Wilson Coefficients \(O\left(\alpha_{s}^{2}\right) \quad \mathrm{W}=4\)...ands. Moch. to appear
- Polarized and Unpolarized asymptotic Heavy Flavor Wilson Coefficients \(O\left(\alpha_{s}^{2(3)}\right) \quad W=4\) J.B., A. de Freitas, W. van Neerven, S. Klein, Nucl. Phys. B755 (2006) 272; I. Bierenbaum, J.B., S. Klein, DESY 07-026, J.B. and S. Klein, DESY 07-027
2. Virtual and soft corrections to Bhabha Scattering \(O\left(\alpha^{2}\right) \quad \mathrm{w}=4\).,. ands. kein

\section*{Example: Bhabha s+v}
\[
\begin{aligned}
T_{0}= & \frac{248+15 N^{2}+N^{4}}{2(N-2)(N-1) N(N+1)(N+2)} S_{1,1,1,1}(N)+\frac{-2}{(N-1)(N+1)} \mathrm{S}_{2,1,1}(N) \\
& +\frac{-340+120 N+17 N^{2}+18 N^{3}-31 N^{4}}{2(N-2)(N-1) N(N+1)(N+2)} S_{3,1}(N)+\frac{1344-502 N-69 N^{2}-2 N^{3}+57 N^{4}}{8(N-2)(N-1) N(N+1)(N+2)} S_{4}(N) \\
& +\frac{304-328 N-500 N^{2}+330 N^{3}-6 N^{4}+6 N^{5}-2 N^{6}+4 N^{7}}{(N-2)^{2}(N-1)^{2} N^{2}(N+1)(N+2)} \mathrm{S}_{2,1}(N) \\
& +\frac{-112-4 N^{2}-4 N^{4}}{(N-2)(N-1) N(N+1)(N+2)} S_{2,1}(N) \mathrm{S}_{1}(N)+\frac{-48+8 N+6 N^{2}+7 N^{3}}{(N-1) N(N+1)(N+2)} S_{3}(N) S_{1}(N) \\
& +\frac{-1840+292 N+5532 N^{2}+827 N^{3}-1978 N^{4}-274 N^{5}+36 N^{6}+19 N^{7}-22 N^{8}}{4(N-2)^{2}(N-1)^{2} N^{2}(N+1)^{2}(N+2)} S_{1,1,1}(N) \\
& +\frac{128-56 N-252 N^{2}+54 N^{3}+177 N^{4}-91 N^{5}+19 N^{6}+9 N^{7}}{2(N-2)(N-1)^{2} N^{2}(N+1)^{2}(N+2)} S_{3}(N) \\
& +\frac{4032-2048 N-14200 N^{2}+5036 N^{3}+23610 N^{4}+2521 N^{5}-12342 N^{6}}{4(N-2)^{3}(N-1)^{3} N^{3}(N+1)^{3}(N+2)} S_{1,1}(N) \\
& +\frac{-3365 N^{7}+2148 N^{8}+903 N^{9}+14 N^{10}-167 N^{11}+50 N^{12}}{4(N-2)^{3}(N-1)^{3} N^{3}(N+1)^{3}(N+2)} S_{1,1}(N) \\
& +\frac{-124+16 N+24 N^{2}-4 N^{3}-14 N^{4}}{(N-2)(N-1) N(N+1)(N+2)} S_{1,1}(N) \zeta(2)+\frac{424-118 N+9 N^{2}-2 N^{3}+23 N^{4}}{4(N-2)(N-1) N(N+1)(N+2)} S_{2}(N) S_{1,1}(N) \\
& +\frac{224+144 N-1216 N^{2}-56 N^{3}+1786 N^{4}+641 N^{5}-406 N^{6}}{4(N-2)^{2}(N-1)^{3} N^{3}(N+1)^{3}(N+2)} S_{2}(N) \\
& +\frac{+17 N^{7}-308 N^{8}+141 N^{9}-56 N^{10}+N^{11}}{4(N-2)^{2}(N-1)^{3} N^{3}(N+1)^{3}(N+2)} S_{2}(N)+\frac{58+21 N+N N^{2}+15 N^{3}+10 N^{4}}{(N-2)(N-1) N(N+1)(N+2)} S_{2}(N) \zeta(2)
\end{aligned}
\]

\section*{Example: Bhabha s+v}
\[
\begin{aligned}
& +\frac{232-384 N^{2}-17 N^{3}+286 N^{4}-128 N^{5}-14 N^{6}+N^{7}}{4(N-2)(N-1)^{2} N^{2}(N+1)^{2}(N+2)} S_{2}(N) S_{1}(N) \\
& +\frac{-560-26 N-31 N^{2}-10 N^{3}-33 N^{4}}{8(N-2)(N-1) N(N+1)(N+2)} S_{2}(N)^{2} \\
& +\frac{576+1088 N-3280 N^{2}-5136 N^{3}+11764 N^{4}+20392 N^{5}-17385 N^{6}-30114 N^{7}}{4(N-2)^{3}(N-1)^{4} N^{4}(N+1)^{4}(N+2)} S_{1}(N) \\
& +\frac{+5984 N^{8}+17228 N^{9}-1228 N^{10}-2754 N^{11}-112 N^{12}-8 N^{13}+33 N^{14}-24 N^{15}}{4(N-2)^{3}(N-1)^{4} N^{4}(N+1)^{4}(N+2)} S_{1}(N) \\
& +\frac{-56+336 N+522 N^{2}+424 N^{3}-53 N^{4}-500 N^{5}+60 N^{6}+28 N^{7}-5 N^{8}}{2(N-2)^{2}(N-1)^{2} N^{2}(N+1)^{2}(N+2)} S_{1}(N) \zeta(2) \\
& +\frac{64+6 N^{2}+N^{3}}{(N-2)(N-1) N(N+1)} S_{1}(N) \zeta(3)+\frac{2112+608 N+76 N^{2}-140 N^{3}+107 N^{4}}{10(N-2)(N-1) N(N+1)(N+2)} \zeta(2)^{2} \\
& +\frac{-224-136 N+1688 N^{2}+1290 N^{3}-1998 N^{4}-1997 N^{5}+198 N^{6}}{2(N(2)} \\
& +\frac{+405 N^{7}+376 N^{8}-119 N^{9}+56 N^{10}+5 N^{11}}{2(N-1)^{3} N^{3}(N-2)^{2}(N+2)(N+1)^{3}} \zeta(2) \\
& +\frac{-552+144 N+1654 N^{2}-370 N^{3}-361 N^{4}+19 N^{5}+35 N^{6}-25 N^{7}}{2(N-2)^{2}(N-1)^{2} N^{2}(N+1)^{2}} \zeta(3) \\
& +\frac{320-64 N-1920 N^{2}+1600 N^{3}+6524 N^{4}-14872 N^{5}-19036 N^{6}+31543 N^{7}-43960 N^{8}-13935 N^{9}}{16(N-1)^{5}(N+1)^{5}(N-2)^{3} N^{5}(N+2)} \\
& +\frac{+65372 N^{10}+26822 N^{11}-44576 N^{12}-9558 N^{13}+9840 N^{14}+339 N^{15}+428 N^{16}-371 N^{17}+128 N^{18}}{16(N-1)^{5}(N+1)^{5}(N-2)^{3} N^{5}(N+2)} \\
& +4 \frac{N^{4}-N^{2}+12}{(N-2)(N-1) N(N+1)(N+2)} f_{0,2}^{2}+(-2) \frac{12}{(N-2)(N-1) N(N+1)(N+2)} f_{0,1}^{2}
\end{aligned}
\]
z-space: A. Penin, (2005)
\(\Longrightarrow 3\) basic sums only; no alternating sums.

\section*{4. Factorial Series}

Consider
\[
\begin{aligned}
& \Omega(z)=\int_{0}^{1} d t t^{z-1} \varphi(t) ; \quad \varphi(1-t)=\sum_{k=0}^{\infty} a_{k} t^{k} \\
& \operatorname{Re}(z)>0, \quad \Omega(z)=\sum_{k=0}^{\infty} \frac{a_{k+1} k!}{z(z+1) \ldots(z+k)}
\end{aligned}
\]
- \(\Omega(z)\) is meromorphic in \(z \in \mathbf{C}\), obeys a recursion \(z \rightarrow z+1\) and has an analytic asymptotic representation.

\section*{Example:}
\[
\begin{aligned}
F_{5}(z) & =\mathbf{M}\left[\frac{\operatorname{Li}_{2}(z)}{1+z}\right](z) \\
F_{5}(z+1) & =-F_{5}(z)+\frac{1}{z}\left[\zeta_{2}-\frac{\psi(z+1)+\gamma_{E}}{z}\right] \\
\text { Asymp. ser. }: \operatorname{Li}_{2}(z) & \rightarrow \operatorname{Li}_{2}(1-z) \\
\mathbf{M}\left[\frac{\operatorname{Li}_{2}(1-z)}{1+z}\right](N) & \propto \frac{1}{2 N^{2}}+\frac{1}{4 N^{3}}-\frac{7}{24} \frac{1}{N^{4}}-\frac{1}{3} \frac{1}{N^{5}}+\frac{73}{120} \frac{1}{N^{6}} \ldots
\end{aligned}
\]

\section*{5. The Basis}
\[
\begin{array}{llll}
w=1 & 1 /(x-1)_{+} & & \\
w=2 & \ln (1+x) /(x+1) & & \\
w=3 & \operatorname{Li}_{2}(x) /(x \pm 1) & & \\
w=4 & \operatorname{Li}_{3}(x) /(x+1) & S_{1,2}(x) /(x \pm 1) & S_{2,2}(x) /(x \pm 1) \\
w=5 & \operatorname{Li}_{4}(x) /(x \pm 1) & S_{1,3}(x) /(x+1) & \\
& \operatorname{Li}_{2}^{2}(x) /(x+1) & {\left[S_{2,2}(-x)-\operatorname{Li}_{2}^{2}(-x) / 2\right] /(x \pm 1)} & S_{2,3}(x) /(x \pm 1)
\end{array}
\]
- \(O(\alpha)\) Wilson Coefficients/anom. dim. \#1
- \(O\left(\alpha^{2}\right)\) Anomalous Dimensions \#2
- \(O\left(\alpha^{2}\right)\) Wilson Coefficients \(\quad \# \leq 5\)
- \(O\left(\alpha^{3}\right)\) Anomalous Dimensions \#15
- \(O\left(\alpha^{3}\right)\) Wilson Coefficients

\section*{6. Conclusions}
- The single-scale quantities in Quantum Field Theories to 3 Loop Order \(\Leftrightarrow \mathrm{w}=6\) can be represented in a polynomial ring spanned by a few Mellin transforms of the above basic functions, which are the same for all known processes. This points to their general nature.
- The basic Mellin transforms are meromorphic functions with single poles at the non-positive integers.
- The total amount of harmonic sums reduces due to algebraic relations (index structure), and structural relations \(\mathrm{N} \epsilon \mathbf{Q}, \mathrm{N} \epsilon \mathbf{R}\).
- They can be represented in terms of factorial series up to simple "soft components". This allows an exact analytic continuation.
- Up to \(w=6\) physical (pseudo-) observables are free of harmonic sums with index \(=\{-1\}\). Up to \(w=5\) all numerator functions are Nielsen integrals.```

