The Status of Polarized Parton Densities

Johannes Blümlein DESY

- Remarks on Theory
- Polarized Parton Densities
- What we still would like to know: Future Avenues

Highest order corrections of HO QCD

- ${}_{ }$ Running $lpha_s$: $O(lpha_s^4)$ Larin, van Ritbergen, Vermaseren 1997
- \checkmark Pol. Bjorken Sum Rule: $O(lpha_s^3)$ Larin, Vermaseren, 1991
- Pol. anomalous dimension: $O(\alpha_s^2) \Delta P_{S,NS}^{ij}$ Mertig, van Neerven, 1995; Vogelsang 1995 $O(\alpha_s^3) \Delta P_{NS}^{qq}$ (due to Ward identity) Moch, Vermaseren, Vogt, 2004
- \square Pol. Wilson coefficients: $O(\alpha_s^2)$; $\Delta C_{S,NS}^{q(G)}$: van Neerven, Zijlstra 1994
- \checkmark Pol. Heavy Flavor Wilson Coefficients: $O(\alpha_s^1)$, Watson 1982
- ${}_{}$ $Q^2 \gg m^2$ Pol. Heavy Flavor Wilson Coefficient : $O(lpha_s^2)$ van Neerven, Smith et al. 1996, Blümlein and Klein, 2007
- \square Transversity: $O(\alpha_s^2)$, some moments anom. dim.: $O(\alpha_s^3)$, Hayashigaki, Kanazawa, Koike; Kumano, Miyama; Vogelsang; 1997; Gracey 2006
- Twist 3: low order results.

DIS: Microscopy of the Nucleon

- determination of all quark densities and the gluon distribution
- determination of all polarized parton densities

DIS: Fundamental Tests of QCD

- precision measurement of Λ_{QCD} and $lpha_s(M_Z^2)$
- Thorough verification of the prediction of the light cone expansion: to higher twist

Challenges for Theory: perturbative and non-perturbative

- higher order precision calculations and data analysis
- Lattice gauge theory results for hadronic matrix elements

The subleading terms cancel the small resummed corrections. Furthermore: F-number conservation. Resum using the Renormalization Group Equations.

Blümlein and Vogt, 1995, 1996 There are no large small x effects.

- Consistent Data Analysis : asymmetry denominator from data
- Consistent Data Analysis : fit the numerator functions
- Not all parameters can be measured through the fit; careful study required.
- Low $Q^2 \ge 4 \text{GeV}^2$ cut would be required. Only possible at EIC.
- Correlated fit of $\Lambda_{
 m QCD}$ mandatory: close relation to $\Delta G(x,Q^2)$
- Evolution of all errors throughout the Evolution Equations
- Include $c\overline{c}$ -production.
- Tasks for Theory: NNLO corrections; higher twist contributions.

JB, Ravindran, van Neerven (2003): $g_{1,2}^{c\overline{c}}(x,Q^2)$

DIS07, Munich, April 2007

 g_1 from Neural Networks

g^{*P*}₁ from Neural Networks Preliminary Fit

Leader, Sidorov, Stamenov (2006)

Polarized Parton Densities: Flavor Separation

Polarized Gluon Density

 \implies Currently slight move towards lower values.

Polarized Gluon Density

COMPASS 2006 compared to other measurements \implies Rather low Q^2 (S. Koblitz)

Polarized Gluon Density

Research Plan for Spin Physics at RHIC

Moments of PDF's: PT + data

f	n	This Fit	MRST04	A02		Moment	BB, NLO
		N ³ LO	NNLO	NNLO	Δu_v	0	0.926
u_v	2	0.3006 ± 0.0031	0.285	0.304		1	0.163 ± 0.014
	3	0.0877 ± 0.0012	0.082	0.087		2	0.055 ± 0.006
	4	0.0335 ± 0.0006	0.032	0.033	Δd_{π}	0	-0.341
d_v	2	0.1252 ± 0.0027	0.115	0.120		1	0.047 ± 0.021
	3	0.0318 ± 0.0009	0.028	0.028		T	-0.047 ± 0.021
	4	0.0106 ± 0.0004	0.009	0.010		2	-0.015 ± 0.009
$u_{\alpha} - d_{\alpha}$	2	0.1754 ± 0.0041	0.171	0.184	$\Delta u_v - \Delta d_v$	0	1.267
		0.0559 ± 0.0015	0.055	0.059		1	0.210 ± 0.025
	4	0.0229 ± 0.0007	0.022	0.024		2	0.070 ± 0.011

J.B., H. Böttcher, A. Guffanti, 2004

J.B., H. Böttcher, 2002

Lattice Results : developing; different fermion-types studied. Low values of m_{π} crucial; values approach 270 MeV now.

$g_2(x,Q^2)$ - the Window to au=3

JLAB Hall A (2004)

 α_s

NLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.	NNLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.		
CTEQ6	0 1165	+0.0065		[1]	MRST03	0.1153	±0.0020	± 0.0030	[2]		
MPST03	0 1165	± 0.0000	± 0.0030	[2]	A02	0.1143	± 0.0014	± 0.0009	[3]		
1011/05/05	0.1105	± 0.0020	10.0050	[4]	SY01(ep)	0.1166	± 0.0013		[8]		
A02	0.1171	± 0.0015	± 0.0033	[3]	SY01(ν N)	0.1153	±0.0063		[8]		
ZEUS	0.1166	± 0.0049		[4]	GRS	0.111			[10]		
H1	0.1150	± 0.0017	± 0.0050	[5]	A06	0.1128	± 0.0015		[11]		
BCDMS	0 1 1 0	+0.006		[6]	BBG	0.1134	+0.0019/-0.0021		[9]		
CPS	0.112	10.000			N ³ LO	$\alpha_s(M_Z^2)$	expt	theory	Ref.		
GIND	0.112				BBG	0 1141	$\pm 0.0020 / - 0.0022$		[0]		
BBG	0.1148	± 0.0019		[9]	000	0.1111	10.0020/ 0.0022		[2]		
BB (pol)	0.113	±0.004	$+0.009 \\ -0.006$	[7]	NNLO and N ³ LO						
	NL	0									

BBG: $N_f = 4$: non-singlet data-analysis at $O(\alpha_s^4)$: $\Lambda = 234 \pm 26 \text{ MeV}$ I. Savin: pol. $O(\alpha_s^2)$ this workshop. Lattice results : Alpha Collab: $N_f = 2$ Lattice; non-pert. renormalization $\Lambda = 245 \pm 16 \pm 16 \text{ MeV}$ QCDSF Collab: $N_f = 2$ Lattice, pert. reno. $\Lambda = 261 \pm 17 \pm 26 \text{ MeV}$

Status of Polarized PDF's ...

DIS07, Munich, April 2007

3. Future Avenues : What would we like to know ?

HERMES & COMPASS :

Finalize data analysis: get still better PDF's

• HERMES unpolarized: $F_2(x, Q^2)$ and $xs(x, Q^2)$. RHIC :

- Improve constraints on polarized gluon and sea-quarks.
- JLAB:
 - High precision measurements in the large x domain at polarized targets.

HERA and JLAB : Improve DVCS data

Theory widely developed, cf. rev. Belitsky & Radyushkin, 2005

Expected DVCS asymmetry $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ with $b_v = 1, b_s = \infty, J_u = 0.4(0.2, 0.0), J_d = 0.0$ in the Regge (left panel) and factorized (right panel) ansatz, at the average kinematics of the full measurement. E = 0 denotes zero effective contribution from the GPD E. The projected statistical error for 8M DIS events is shown. The systematic error is expected to not exceed the statistical one.

F. Ellinghaus et al. 2005

The measurement of L_q off data is model-dependent at the moment. Lattice calculations at low pion masses are needed to complete the picture

New DIS Machines

Where to go?

- High energies : small x, large Q^2 desirable.
- High luminosities : ELIC: \sqrt{s} between CERN and HERA energies

Enhancing Precision Further...

- Determine the flavor structure of polarized nucleons
- Detailed Studies of twist–3 contributions and sum-rules.
- Measure the angular momentum of quarks and gluons
- \checkmark Measure Λ_{QCD} of polarized data precisely
- Measure the scaling violations of $h_1(x,Q^2)$
- Study higher twist in a definite way needs input from Lattice Gauge Theory

There is a strong need for the EIC, which should be started soon.