Measurement of the spin structure functions g_1^p and g_1^d at HERMES

Lara De Nardo
TRIUMF/DESY

Inclusive Deep Inelastic Scattering

$$\frac{\partial^2 \sigma}{\partial \Omega \partial E'} \propto L_{\mu\nu} W^{\mu\nu}$$

$$\begin{aligned} |\boldsymbol{g}_{1} \approx \langle \boldsymbol{e}^{2} \rangle \Big[\Delta \boldsymbol{C}_{\Sigma} \otimes \Delta \Sigma + \Delta \boldsymbol{C}_{G} \otimes \Delta \boldsymbol{G} + \Delta \boldsymbol{C}_{NS} \otimes \Delta \boldsymbol{q}_{NS}^{p,n} \Big] \\ &= \frac{1}{2} \langle e^{2} \rangle \Big[\Delta \Sigma + \Delta q_{NS}^{p,n} \Big] \quad \text{in LO QCD} \end{aligned}$$

 $L_{\mu\nu}$ is exact in QED

$$\mathbf{W}^{\mu\nu} = -g^{\mu\nu}\mathbf{F_1} + \frac{p^{\mu}p^{\nu}}{\nu}\mathbf{F_2} + \frac{i}{\nu}\epsilon^{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}\mathbf{g_1} + \frac{i}{\nu^2}\varepsilon^{\mu\nu\lambda\sigma}q^{\lambda}(p\cdot qs^{\sigma} - s\cdot qp^{\sigma})\mathbf{g_2}$$

Inclusive Deep Inelastic Scattering

$$rac{\partial^2 \sigma}{\partial \Omega \partial E'} \propto L_{\mu \nu} \mathbf{W}^{\mu \nu}$$

$$\mathbf{g}_{1} \approx \langle \mathbf{e}^{2} \rangle \left[\Delta \mathbf{C}_{\Sigma} \otimes \Delta \Sigma + \Delta \mathbf{C}_{G} \otimes \Delta \mathbf{G} + \Delta \mathbf{C}_{NS} \otimes \Delta \mathbf{q}_{NS}^{p,n} \right]$$

$$= \frac{1}{2} \langle e^{2} \rangle \left[\Delta \Sigma + \Delta q_{NS}^{p,n} \right] \quad \text{in LO QCD}$$

 $L_{\mu\nu}$ is exact in QED

$$\mathbf{W}^{\mu\nu} = -g^{\mu\nu}\mathbf{F_1} + \frac{p^{\mu}p^{\nu}}{\nu}\mathbf{F_2} + \frac{i}{\nu}\epsilon^{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}\mathbf{g_1} + \frac{i}{\nu^2}\epsilon^{\mu\nu\lambda\sigma}q^{\lambda}(p \cdot qs^{\sigma} - s \cdot qp^{\sigma})\mathbf{g_2} - \\ -r_{\mu\nu}\mathbf{b_1} + \frac{1}{6}(s_{\mu\nu} + t_{\mu\nu} + u_{\mu\nu})\mathbf{b_2} + \frac{1}{2}(s_{\mu\nu} - u_{\mu\nu})\mathbf{b_3} + \frac{1}{2}(s_{\mu\nu} - t_{\mu\nu})\mathbf{b_4}$$

spin 1

Measured Inclusive Asymetries

inclusive asymmetry:

$$A_{||} = rac{\sigma^{
ightleftarrow} - \sigma^{
ightleftarrow}}{\sigma^{
ightleftarrow} + \sigma^{
ightleftarrow}} = rac{1}{P_B P_z} \cdot rac{rac{N^{
ightleftarrow}}{L^{
ightleftarrow}} - rac{N^{
ightleftarrow}}{L^{
ightleftarrow}}}{rac{N^{
ightleftarrow}}{L^{
ightleftarrow}} + rac{N^{
ightleftarrow}}{L^{
ightleftarrow}}}$$

$$g_{1}(x,Q^{2}) = \frac{1}{1 - \frac{y}{2} - \frac{1}{4}y^{2}\gamma} \left[\frac{Q^{4}}{8\pi\alpha^{2}y} \frac{\partial^{2}\sigma_{unpol}}{\partial x \partial Q^{2}} \right] A_{\parallel}(x,Q^{2}) + \frac{y}{2}\gamma^{2} g_{2}(x,Q^{2})$$

$$kine matic factors param. measured fact. param.$$

The HERMES Spectrometer

Reconstruction: $\delta p/p < 2\%$, $\delta \theta < 1$ mrad

Internal Gas Target: unpol: H₂, D₂, He, N, Ne, Kr, Xe, He, H, D, H

Particle ID: TRD, Preshower, Calorimeter --- 1997: Cherenkov, 1998: RICH

	<u> </u>	Luminosity	<u> </u>	<u> </u>	<u>, i ne da</u> i
Target	Yea r	(pb^{-1})	#	P_{target} (%)	
H	1996	12.6	670,000	75.9 ± 3.2	_

 85.1 ± 3.2

 85.1 ± 3.2 (+)

 84.0 ± 3.1 (-)

2,800,000

10,900,000

P_{beam}~(53±1.8)%

P_{beam}~(53±1.0)%

Full analysis published in Phys.Rev.**D75** (2007)012007

> The cut at $Q^2=1$ Ge V^2 identifies the DIS region

Н

D

1997

2000

37.3

138.7

<u>Unfolding of radiative corrections</u>

- Measured events have to be corrected for:
 - Background tail (radiation from (quasi)-elastic)
 - Radiation from DIS and detector smearing
- The smearing of events is simulated through a MonteCarlo which includes a full detector description and a model for the cross-section
- The approach is independent on the model for the asymmetry in the measured region

■ Statistical uncertainties are diagonal elements of covariance matrix

■ Systematic unc. are dominted by target and beam polarization

Larg De Nardo

g₁ results

■ Statistical uncertainties are diagonal elements of covariance matrix

Systematic unc. are dominted by target and beam polarization

Lara De Nardo

g₁ results

g₁ -0.5 gⁿ from p,d: HERMES (Q²< 1 GeV²) HERMES (Q²> 1 GeV²) -1 -1.5 SMC g -0.5 g₁ⁿ from ³He: **HERMES** -1 **JLAB** E142 -1.5 E154 $\langle Q^2 \rangle$ (GeV²) 10 X

Neutron results

$$\boldsymbol{g}_{1}^{n} = \frac{2}{1 - \frac{3}{2}\boldsymbol{\omega}_{D}} \cdot \boldsymbol{g}_{1}^{d} - \boldsymbol{g}_{1}^{p}$$

- g₁ⁿ negative everywhere except at very high-x
- Low-Q² data tends to zero at low-x
 - **▶** Does not support earlier conjecture of strong decrease for $x \rightarrow 0$

<u>Integrals</u>

Saturation in the deuteron integral is assumed

◆Use only deuteron data!

from hyperon beta decay $(a_8=0.586\pm0.031)$

$$a_0 = \frac{1}{\Delta C_S} \left[\frac{9\Gamma_1^d}{(1-rac{3}{2}\omega_D)} - rac{1}{4} a_8 \, \Delta C_{NS}
ight]$$
 theory ω_D =0.05±0.05

$$egin{array}{lcl} \Delta u + \Delta ar u & = & rac{1}{6} \left[2a_0 + a_8 + 3a_3
ight] \ \Delta d + \Delta ar d & = & rac{1}{6} \left[2a_0 + a_8 - 3a_3
ight] \ \Delta s + \Delta ar s & = & rac{1}{3} \left[\ a_0 - a_8
ight] \end{array}$$

(use only Q²>1GeV² data)

	central	uncertainties		
	value	theor.	exp.	evol.
a_0	0.330	0.011	0.025	0.028
$\Delta u + \Delta ar{u}$	0.842	0.004	0.008	0.009
$\Delta d + \Delta ar{d}$	-0.427	0.004	0.008	0.009
$\Delta s + \Delta \bar{s}$	-0.085	0.013	0.008	0.009

 $Q^2=5~GeV^2$, NNLO in $\overline{\rm MS}$ scheme

from neutron beta decay a_3 =1.269±0.003

Comparisons

Ехр.	Q_0^2	x range	type	Integral					
·	(GeV^2)			value	stat.	syst.	param.	evol.	
E143	5	0.03 - 0.8	р	0.117	0.003	0.007		-	
HERMES				0.115	0.002	0.006	0.003	0.004	
SMC (*)	10	0.021-0.7	р	0.120	0.005	0.0	007	0.002	
HERMES	ט	0.021-0.7	ץ	0.119	0.003	0.007	0.003	0.005	
EMC (*)	10.7	0.021-0.7	0.021-0.7	n	0.110	0.011	0.0	019	-
HERMES	10.7		р	0.119	0.003	0.007	0.003	0.005	
E155 (*)	155 (*) ₅	0.021-0.9	n	0.124	0.002	0.0	009	0.005	
HERMES	,	0.021-0.9	р	0.121	0.002	0.007	0.003	0.005	
E143	5	0.03 - 0.8	d	0.043	0.003	0.0	003	-	
HERMES	3	0.03 - 0.8	d	0.042	0.001	0.002	0.001	0.002	
SMC (*)	10	0.021-0.7	d	0.042	0.005	0.0	004	0.001	
HERMES	10	0.021-0.7	u	0.043	0.001	0.002	0.001	0.002	
E155 (*)	5	0.021-0.9	d	0.043	0.002	0.0	003	0.003	
HERMES	3			0.044	0.001	0.002	0.001	0.003	
E142	2	0.03-0.6	n (³ He)	-0.028	0.006	0.006		-	
HERMES	۷		n (p,d)	-0.025	0.003	0.007	0.002	0.001	
E154 (*)	2	0.021-0.7	n (³ He)	-0.032	0.003	0.0	005	0.003	
HERMES			n (p,d)	-0.027	0.004	0.008	0.003	0.002	
HERMES	l 25	0.023-0.6	n (³ He)	-0.034	0.013	0.0	005	-	
HERMES			n (p,d)	-0.027	0.003	0.007	0.003	0.001	
HERMES/				0.147	0.008	0.0	019		
SIDIS	2.5	0.023-0.6	NS	0.147	0.000	U.	013	-	
HERMES				0.138	0.005	0.013	0.005	0.003	

- Integrals provide a fair comparison of the accuracies of various experiments (all correlations taken into account)
- Proton data comparable with SLAC and CERN expts.
- Deuteron data is the most precise so far

^{(*):} integrals re-calculated in a smaller x range, to match HERMES Lara De Nardo

Conclusions

- HERMES has measured g_1 for proton and deuteron for 0.0041<x<0.9 and 0.18 GeV² <Q²<20 GeV²
- Measured results are correlated no longer systematically but statistically
- Integrals provide a fair comparison for the statistical accuracy of various experiments:
 - Proton data precision is comparable with CERN and SLAC
 - Deuteron data is the most precise so far
- The deuteron integral is observed to saturate
 - $| a_0 = 0.330 \pm 0.011 (theor) \pm 0.025 (exp) \pm 0.028 (evol)$ at 5GeV²

agreement with COMPASS data: $a_0(COMPASS) = 0.35 \pm 0.03(stat) \pm 0.05 (syst)$ at $3GeV^2$

Lara De Nardo

EXTRA SLIDES

Bjorken Sum Rule

$$g_1^{NS} \equiv g_1^p - g_1^n = 2 \left[g_1^p - rac{g_1^d}{1 - rac{3}{2} \omega_D}
ight]$$

$$\Gamma_1^p(Q^2) - \Gamma_1^n(Q^2) = \frac{1}{6}a_3 \Delta C_{NS}(\alpha_s(Q^2))$$

Assuming the validity of the BSR, and the saturation of the deuteron integral, we can estimate the proton integral in the unmeasured low-x region:

	BJS	Estimated $\Gamma_1^p - \Gamma_1^p(meas.)$
LO	0.2116 ± 0.0005	$0.0316 \pm 0.0008 \pm 0.0025 \pm 0.0079 \pm 0.0025$
NLO	0.1923 ± 0.0009	$0.0219 \pm 0.0008 \pm 0.0025 \pm 0.0079 \pm 0.0025$
NNLO	0.1856 ± 0.0015	$0.0186 \pm 0.0009 \pm 0.0025 \pm 0.0079 \pm 0.0025$
NNNLO	0.1821 ± 0.0019	$0.0169 \pm 0.0013 \pm 0.0025 \pm 0.0079 \pm 0.0025$

 a_3, α_s, ω_D

proton integral

integral

deuteron Q² evolution

QCD fits to g₁ world data

- As effect of the inclusion of the HERMES data, the gluon moment goes from 0.32±0.47 to 0.22 ±0.39.
- The effect on the other parton distributions is much less visible
- $\Delta \Sigma = 0.22 \pm 0.11 \pm 0.05 (exp) \pm 0.06 (theo)$

More on Integrals

Use same code as BB fit (Blumlein&Boettcher, Nucl.Phys.B**636**(2002)225)

$$egin{aligned} egin{aligned} oldsymbol{g_1}(x_i,Q_i^2) &= oldsymbol{g_1}(x_i,Q_0^2) + \left[oldsymbol{g_1^{fit}}(x_i,Q_i^2) - oldsymbol{g_1^{fit}}(x_i,Q_0^2)
ight] & ext{Evolution to a common Q}^2 = oldsymbol{Q}^2_0 \end{aligned}$$

$$\Gamma_1(Q_0^2) = \sum_i \frac{{\color{red}g_1}(\langle x\rangle_i,Q_0^2)}{{\color{red}g_1^{fit}}(\langle x\rangle_i,Q_0^2)} \int_{x_i}^{x_{i+1}} \mathrm{d}x \, {\color{red}g_1^{fit}}(x,Q_0^2) \quad \textit{Integral}$$

$$\sigma^2 = \sum_{ij} \left[\int_{x_i}^{x_{i+1}} \, \mathrm{d}x \, g_1^{fit}(x,Q_0^2) \right] \cdot \left[\int_{x_j}^{x_{j+1}} \, \, \mathrm{d}x \, g_1^{fit}(x,Q_0^2) \right] \cdot \frac{\cos{(g_1)}_{ij}}{g_1^{fit}(\langle x \rangle_i,Q_0^2) \, g_1^{fit}(\langle x \rangle_j,Q_0^2)}$$

Statistical uncertainty on the integral

The integrals at Q²=5 GeV²

	$\int_{0.021}^{0.9} \mathrm{d}x g_1$	uncertainties				
		stat.	syst.	par.	evol.	
Q^2 =5 GeV^2						
p	0.1211	0.0025	0.0068	0.0028	0.0050	
d	0.0436	0.0012	0.0018	0.0008	0.0026	
n	-0.0268	0.0035	0.0079	0.0031	0.0018	
NS	0.1479	0.0055	0.0142	0.0055	0.0049	