Open Questions

G.G.Ross, DIS07, Munich, April07

Open Questions Beyond the Standard Model

The origin of mass?

Due to a Higgs boson? Other physics? Solution at energy <1TeV

Unification of fundamental forces?

At a very high scale?

Quantum theory of gravity?

(Super)string theory, extra dimensions

Origin of dark matter?

WIMP SUSY KK

LHC answers:

Electroweak spontaneous symmetry breaking $M_{W,Z}, m_{q_i}, m_{l_i}, V_{CKM}, V_{MNS}$

Higgs physics:

- Higgsless (or very heavy Higgs)
 KK, Technicolour...
- Light Higgs SUSY, eXtra Dimensions, little Higgs..

Higgsless (or very heavy Higgs)

A light Higgs scalar is needed for perturbative unification

 $\bullet W_L Z_L \to W_L Z_L$

Unitarity violation:
$$\frac{g^2 \Lambda^2}{16\pi^2 M_W^2} = 1 \implies \Lambda \sim 1.8 TeV$$

Higgsless (or very heavy Higgs)

A light Higgs scalar is needed for perturbative unification

 $\bullet W_L Z_L \to W_L Z_L$

Unitarity violation:
$$\frac{g^2 \Lambda^2}{16\pi^2 M_W^2} = 1 \implies \Lambda \sim 1.8 TeV$$

$$\Lambda \sim \frac{3\pi^4}{g^2} \frac{M_W^2}{M} = (5 - 10)TeV$$

Higgsless

Chivukula, Discus, He

Higgsless (or very heavy Higgs)

A light Higgs scalar is needed for perturbative unification

 $W_L Z_L \to W_L Z_L$

Unitarity violation:

$$\frac{g^2 \Lambda^2}{16\pi^2 M_W^2} = 1 \quad \Rightarrow \quad \Lambda \sim 1.8 TeV$$

$$\Lambda \sim \frac{3\pi^4}{g^2} \frac{M_W^2}{M} = (5 - 10) TeV$$

LHC:

W/Z bremsstrahlung off quarks \Rightarrow 2 forward jets + gauge boson pair \Rightarrow 2j+3l+ \mathbb{Z}_T

Narrow resonance c.f. strongly bound state

Narrow resonance c.f. strongly bound state

Model	$WW \to WW$	$WZ \to WZ$	$WW \to ZZ$
SM	Yes	No	Yes
Higgsless	Yes	Yes	No

Narrow resonance c.f. strongly bound state

 $\bullet W_L Z_L \to W_L Z_L$

Difficult as large QCD backgrounds in multijet channel

Model	$WW \to WW$	$WZ \to WZ$	$WW \to ZZ$
SM	Yes	No	Yes
Higgsless	Yes	Yes	No

Narrow resonance c.f. strongly bound state

 \bullet $W_L Z_L \rightarrow W_L Z_L$

Difficult as large QCD backgrounds in multijet channel

Model	$WW \to WW$	$WZ \to WZ$	$WW \rightarrow ZZ$
SM	Yes	No	Yes
Higgsless	Yes	Yes	No

Mass measurement can establish Higgsless models

$$g_{\rm WWZZ} \ = \ g_{\rm WWZ}^2 + \sum_i (g_{\rm WZV}^{(i)})^2, \qquad {\rm Csaki\,\,et\,\,al}$$

$$2(g_{\rm WWZZ} - g_{\rm WWZ}^2)(M_{\rm W}^2 + M_{\rm Z}^2) + g_{\rm WWZ}^2 \frac{M_{\rm Z}^4}{M_{\rm W}^2} \ = \ \sum_i (g_{\rm WZV}^{(i)})^2 \left[3(M_i^\pm)^2 - \frac{(M_{\rm Z}^2 - M_{\rm W}^2)^2}{(M_i^\pm)^2} \right]$$

Strongly coupled vector boson sector

Unitarity saturation signals strong interaction,observation of no excess means weakly coupled quanta below 1TeV

Strongly coupled vector boson sector

Unitarity saturation signals strong interaction,observation of no excess means weakly coupled quanta below 1TeV

Chanowitz "No-lose" theorem

Unfortunately

Strongly coupled vector boson sector

Unitarity saturation signals strong interaction,observation of no excess means weakly coupled quanta below 1TeV

Chanowitz "No-lose" theorem

Unfortunately

 But precision tests suggest strong interaction cannot be all

Light Higgs

How will we distinguish these possibilities?

How will we distinguish them?

e.g. SUSY and UED have similar level structure

Also the couplings of both the SUSY and KK states are the same as their SM partners

Spin discriminant

Spin discriminant

SUSY: $\frac{\tilde{q}}{Q_1}$ $\tilde{\chi}_2^0$ ℓ^{\pm} (near) ℓ^{\mp} (far) ℓ^{\mp} ℓ^{\pm} ℓ^{\pm}

Cascade Decay Chains

There are 6 possible spin assignments:

Spin discriminant

SUSY: $\frac{\tilde{q}}{Q_1}$ $\tilde{\chi}_2^0$ ℓ^{\pm} (near) UED: ℓ_1^{\mp} ℓ_1^{\pm} ℓ

Cascade Decay Chains

There are 6 possible spin assignments:

Discriminant:

$$\frac{dP}{dm} = \frac{1}{\Gamma} \frac{d\Gamma}{dm}$$

 Γ total decay rate of chain

$$m_{ab}^2 = (p_a + p_b)^2$$

For Example, l^+l^-

The m_{ll}^2 distributions for SPS 1a masses and UE $(R^{-1} = 800 \text{GeV}, \Lambda R = 20)$ are:

$$\frac{dP}{dm} = \frac{1}{\Gamma} \frac{d\Gamma}{dm}$$

 Γ total decay rate of chain

Discrimination

$T \downarrow S \rightarrow$	SFSF	FVFV	FSFS	FVFS	FSFV	SFVF
SFSF	∞	60486	23	148	15608	66
FVFV	60622	∞	22	164	6866	62
FSFS	36	34	∞	16	39	266
FVFS	156	173	11	∞	130	24
FSFV	15600	6864	25	122	∞	76
SFVF	78	73	187	27	90	∞

Number of events, assuming FSFS is true, such that FSFS is 1000 times more likely than other model.

SFSF

FVFV -

FSFS

FVFS

FSFV -

0.8

0.6

Athanasiou, Lester, Smillie, Webber

Caveats: jet identification, mass measurements uncertain, charge asymmetry only comes from quark production...

e.g. $\frac{dP}{dm_{\parallel}^2}$ - Difference between SUSY and UED $\propto \beta(m_i)$, small in favoured parameter space

Kong, Matchev

Caveats: jet identification, mass measurements uncertain, charge asymmetry only comes from quark production...

e.g. $\frac{dP}{dm_{\parallel}^2}$ - Difference between SUSY and UED $\propto \beta(m_i)$, small in favoured parameter space

Alternative methods being developed may offer complementary information

Spectrum

What do we learn from measuring the spectrum?

Spectrum

What do we learn from measuring the spectrum?

SUSY: SUSY breaking mechanism, hidden sector, unification

XD: Compactification (need higher levels)

Dark matter abundance

SUSY: Soft mass unification

 $SU(3) \otimes SU(2) \otimes U(1) \rightarrow SU(3) \otimes U(1)_{EM}$

SUSY: Soft mass unification

 $SU(3) \otimes SU(2) \otimes U(1) \rightarrow SU(3) \otimes U(1)_{EM}$

SUSY: Soft mass unification

- Gaugino mass unification unaffected
- Soft mass unification (usually) unchanged

 $SU(3) \otimes SU(2) \otimes U(1) \rightarrow SU(3) \otimes U(1)_{EM}$

Dark matter abundance

Dark matter abundance in SUSY LSP very sensitive to slepton mass(es)

Neutralino LSP

Ellis, Olive, Santoso, Spanos

Dark matter abundance

Dark matter abundance in SUSY LSP very sensitive to slepton mass(es)

Slepton mass measurement at the LHC

- Direct production channel has large WW, tt backgrounds
- Cascade decays promising dilepton invariant mass distribution

e.g.
$$\widetilde{\chi}_2^0 \rightarrow l^{\pm} l^{\mp} \widetilde{\chi}_1^0$$

Endpoint for virtual intermediate states: $m_{ll, \text{max}} = m_{\widetilde{\chi}_2^0} - m_{\widetilde{\chi}_1^0}$

$\tan \beta = 10 \; , \; \mu > 0$ $m_t = 178 \; GeV$ $m_h = 114 \; GeV$ $m_{h} = 104 \; GeV$ $m_{1/2} \; (GeV)$

Neutralino LSP

Ellis, Olive, Santoso, Spanos

Event rate for mSUGRA study points:

Point	M_0	$M_{\frac{1}{2}}$	$M_{ ilde{\ell}}$	σ	N(10fb ⁻¹)
A	40GeV	189 GeV	92 GeV	170 pb	$1.7 * 10^{6}$
В	150GeV	187 GeV	96 GeV	150 pb	$1.5 * 10^{6}$
С	3280GeV	300 GeV	3277 GeV	4.4 pb	44,000
$t ar{t}$ (SM background)	NA	NA	NA	425 pb	$4.25 * 10^{6}$

Birkedal, Group, Matchev

Little hierarchy problem:

Standard Model

$$\delta m_H^2 \propto y_t^2 \Lambda_{UV}^2$$
 Fine tuned

Little hierarchy problem:

Standard Model

$$\delta m_H^2 \propto y_t^2 \Lambda_{UV}^2$$

SUSY

$$\delta m_H^2 \simeq -\frac{3y_t^2}{8\pi^2}\,m_{\tilde t}^2\,\log\left(\frac{\Lambda_{UV}^2}{m_{\tilde t}^2}\right)$$
 Fine tuned

Fine tuned

Little hierarchy problem:

Standard Model

$$\delta m_H^2 \propto y_t^2 \Lambda_{UV}^2$$

SUSY

$$\delta m_H^2 \simeq -\frac{3y_t^2}{8\pi^2}\,m_{\tilde t}^2\,\log\left(\frac{\Lambda_{UV}^2}{m_{\tilde t}^2}\right)$$
 Fine tuned

Fine tuned

Little Higgs

$$\delta m_H^2 \propto \frac{y_t^2}{16\pi^2} f^2$$

(Pseudo Goldstone boson)

Fine tuned

Little hierarchy problem:

Standard Model

 $\delta m_H^2 \propto y_t^2 \Lambda_{UV}^2$

SUSY

 $\delta m_H^2 \simeq -\frac{3y_t^2}{8\pi^2}\,m_{\tilde t}^2\,\log\left(\frac{\Lambda_{UV}^2}{m_{\tilde t}^2}\right)$ Fine tuned

Fine tuned

Little Higgs

 $\delta m_H^2 \propto \frac{y_t^2}{16\pi^2} f^2$

(Pseudo Goldstone boson)

..but precision tests $\Rightarrow f = O(TeV)$

$$\begin{array}{c|c} H_{2} & & \\ \hline \\ h_{t} & h_{t} & \\ \hline \\ Q & & \\ \end{array} \qquad \begin{array}{c} \tilde{Q} \\ \\ \hline \\ H_{2} & h_{t}^{2} \\ \end{array}$$

Little hierarchy problem:

Standard Model

$$\delta m_H^2 \propto y_t^2 \Lambda_{UV}^2$$

SUSY

$$\delta m_H^2 \simeq -\frac{3y_t^2}{8\pi^2}\,m_{\tilde t}^2\,\log\left(\frac{\Lambda_{UV}^2}{m_{\tilde t}^2}\right)$$
 Fine tuned

Little Higgs

$$\delta m_H^2 \propto \frac{y_t^2}{16\pi^2} f^2$$

(Pseudo Goldstone boson)

..but precision tests $\Rightarrow f = O(TeV)$

(SUSY+PG boson)

Fine tuned

Vectorlike top quark

(Needed to cancel top quark contribution)

Falkowskiet al; Csaki et al...

 $M_{SUSY} \rightarrow 10 TeV, \quad m_T \leq 1 TeV$

New heavy quarks, new heavy gauge bosons $\sim TeV$

SUMMARY

LHC will probe new energy regime relevant to EW breaking.

Many possibilities identified - it will require extensive correlated information to distinguish between them. This will need:

- Control over SM backgrounds in a wide variety of (multiparticle) processes
- Higher order radiative corrections $(\sigma(gg \rightarrow H) \simeq \sigma_{LO}(1 + 0.7 + 0.3 + ..))$
 - Develop techniques to measure spin and mass of new states

SUMMARY

LHC will probe new energy regime relevant to EW breaking.

Many possibilities identified - it will require extensive correlated information to distinguish between them. This will need:

- Control over SM backgrounds in a wide variety of (multiparticle) processes
- Higher order radiative corrections $(\sigma(gg \rightarrow H) \simeq \sigma_{LO}(1 + 0.7 + 0.3 + ..))$
- Develop techniques to measure spin and mass of new states

Much has been done but much still to do!