Andreas Vogt University of Liverpool

- Introduction: partons in hard processes, LHC Higgs production
- **I** Higher-order effects in the parton evolution, small-x logarithms
- Parton evolution in practice: evolution codes and benchmarks
- Input shapes and factorization schemes, heavy-quark densities
- Highlights of recent parton analyses, future constraints at LHC
- **Instead of a summary:** *W***-mass at the LHC**

DIS 2007, Munich, 16-04-07

W.L. van Neerven, 1947 – 2007

Photo courtesy of DESY

One of the greatest theorists of deep-inelastic processes

Electro-weak corrections for LEP
 2nd order QCD corr's for DY process
 NLO heavy-quark production in *pp* O (α_s²) coefficient functions in DIS
 Heavy quarks in structure functions
 Polarized NLO splitting functions
 2nd order corr's for fragmentation
 Variable-flavour partons and DIS
 QCD corr's to LHC Higgs production

Parton distributions and hard processes (I)

Example: inclusive photon-exchange deep-inelastic scattering (DIS)

Hard scale, Bjorken variable

$$Q^2 = -q^2$$

$$x = Q^2/(2P\!\cdot\!q)$$

Lowest order, quarks: $x = \xi$

Parton distributions and hard processes (I)

Example: inclusive photon-exchange deep-inelastic scattering (DIS)

Hard scale, Bjorken variable

$$Q^2 = -q^2$$

$$x = Q^2/(2P\!\cdot\!q)$$

Lowest order, quarks: $x = \xi$

Structure functions $F_{2,L}$ [up to $1/Q^2$ terms – cut data to suppress]

$$x^{-1}F_a^{p}(x,Q^2) = \sum_i \int_x^1 \frac{d\xi}{\xi} c_{a,i}\left(\frac{x}{\xi}, \alpha_s(\mu^2), \frac{\mu^2}{Q^2}\right) f_i^{p}(\xi,\mu^2)$$

Coefficient functions: scheme, scale $\mu = \mathcal{O}(Q)$, Mellin convolution

Parton distributions and hard processes (II)

Parton distributions f_i : evolution equations (\otimes = Mellin conv.)

$$\frac{d}{d\ln\mu^2} f_i(\boldsymbol{\xi}, \boldsymbol{\mu^2}) = \sum_k \left[P_{ik}(\alpha_s(\boldsymbol{\mu^2})) \otimes f_k(\boldsymbol{\mu^2}) \right] (\boldsymbol{\xi})$$

Initial conditions incalculable in pQCD. Lattice: low moments only \Rightarrow predictions: fits of suitable reference processes, universality

Parton distributions f_i : evolution equations (\otimes = Mellin conv.)

$$\frac{d}{d\ln\mu^2} f_i(\xi,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right](\xi)$$

Initial conditions incalculable in pQCD. Lattice: low moments only \Rightarrow predictions: fits of suitable reference processes, universality

Expansion in α_s : splitting functions *P*, coefficient functions c_a

$$P = \alpha_{s} P^{(0)} + \alpha_{s}^{2} P^{(1)} + \alpha_{s}^{3} P^{(2)} + \dots$$

$$c_{a} = \alpha_{s}^{n_{a}} \left[c_{a}^{(0)} + \alpha_{s} c_{a}^{(1)} + \alpha_{s}^{2} c_{a}^{(2)} + \dots \right]$$

LO: approximate shape, rough estimate of rate

Parton distributions f_i : evolution equations (\otimes = Mellin conv.)

$$\frac{d}{d\ln\mu^2} f_i(\xi,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right](\xi)$$

Initial conditions incalculable in pQCD. Lattice: low moments only \Rightarrow predictions: fits of suitable reference processes, universality

Expansion in α_s : splitting functions *P*, coefficient functions c_a

$$P = \alpha_{s} P^{(0)} + \alpha_{s}^{2} P^{(1)} + \alpha_{s}^{3} P^{(2)} + \dots$$
$$c_{a} = \alpha_{s}^{n_{a}} \left[c_{a}^{(0)} + \alpha_{s} c_{a}^{(1)} + \alpha_{s}^{2} c_{a}^{(2)} + \dots \right]$$

NLO: first real prediction of size of cross sections

NNLO, $P^{(2)}$, $c_a^{(2)}$: first serious error estimate of pQCD predictions

Higgs boson production at the LHC (I)

Error guess: apparent convergence, variation of scale μ (how far?) Next-to-leading order (NLO) insufficient for quantitative prediction

Higgs boson production at the LHC (II)

 $\hat{\sigma}_{\text{NNLO}}$: Harlander, Kilgore (02); Anastasiou, Melnikov (02, 05 [σ_{diff}]) Partons including NNLO: MRST (plot), Alekhin.

Higher-order uncertainties: $\sim 15\%$ at NNLO

Higgs boson production at the LHC (II)

 $\hat{\sigma}_{NNLO}$: Harlander, Kilgore (02); Anastasiou, Melnikov (02, 05 [σ_{diff}]) Partons including NNLO: MRST (plot), Alekhin. Parton uncertainty?

Higher-order uncertainties: $\sim 15\%$ at NNLO, $\sim 5\%$ at approx. N³LO

Parton evolution from HERA to LHC

Kinematics: partons with momentum fractions $\xi_{-} < \xi < 1$ contribute

W/Z,~H, top, new physics: $\xi_{-}\gtrsim 10^{-4}$, can cut at $Q^{2}pprox 10~{
m GeV}^{2}$

Parton evolution at large N/large x in MS

Recall $A^N = \int_0^1 dx \, x^{N-1} A(x)$. Non-singlet⁺: $u + \bar{u} - (d + \bar{d})$ etc

Parton evolution at large N large x in MS

Recall $A^N = \int_0^1 dx \, x^{N-1} A(x)$. Non-singlet⁺: $u + \bar{u} - (d + \bar{d})$ etc

N³LO: P_{ns}^+ now known for N = 2, $n_f = 3$ Baikov, Chetyrkin (06) $P_{ns}^+ = -0.283 \alpha_s [1 + 0.869 \alpha_s + 0.798 \alpha_s^2 + 0.926 \alpha_s^3 + ...]$ N > 2: similar / smaller (as $\ln N$ coeff's). $n_f > 3$: HO corr's smaller

x-values for colliders: not even shape guaranteed by leading logs

Singlet splitting and evolution at small x

Singlet splitting and evolution at small $m{x}$

General: small-*x* limits of splitting fct's insufficient in convolutions First estimate of corr's beyond NNLO: future moments at order α_s^4

Evolution of singlet parton distributions

Example: quark and gluon scale derivatives at scale $Q^2 \approx 30 \text{ GeV}^2$

Expansion very stable for main LHC momentum fractions $~x \gtrsim 10^{-4}$

Available evolution codes including NNLO

x-space: discretization in x, $\mu_{\rm f}$ of coupled integro-differential eqs.

HOPPET (G. Salam, from 2001), http://hepforge.cedar.ac.uk/hoppet/ QCDNUM (M. Botje, new: v. 17), http://www.nikhef.nl/~h24/qcdnum/

N-space: ordinary diff. eqs., time-ordered exp., $N \rightarrow x$ numerical

QCD-Pegasus (A.V., publ. 2004), http://www.liv.ac.uk/~avogt/pegasus.html

Available evolution codes including NNLO

x-space: discretization in x, $\mu_{\rm f}$ of coupled integro-differential eqs.

HOPPET (G. Salam, from 2001), http://hepforge.cedar.ac.uk/hoppet/ QCDNUM (M. Botje, new: v. 17), http://www.nikhef.nl/~h24/qcdnum/

N-space: ordinary diff. eqs., time-ordered exp., $N \rightarrow x$ numerical QCD-Pegasus (A.V., publ. 2004), http://www.liv.ac.uk/~avogt/pegasus.html

Benchmark tables for the parton evolution

Evolution of Les Houches (2001) reference input at $\mu_{\mathrm{f},0}^2=2~\mathrm{GeV^2}$

$$egin{array}{rll} xu_v(x,\mu_{
m f,0}^2) &=& 5.1072 \ x^{0.8} \ (1-x)^3 \ , \ \ldots \ xg \ (x,\mu_{
m f,0}^2) &=& 1.7000 \ x^{-0.1} \ (1-x)^5 \end{array}$$

with

$$\alpha_{\rm s}(\mu_{\rm r}^2=2~{\rm GeV}^2)~=~0.35$$

at LO, NLO, NNLO, for $\,\mu_{
m r} = \{0.5,\ 1,\ 2\}\,\mu_{
m f}$, with fixed/variable $N_{\!f}$

Use of two completely different codes. G. Salam, A.V. (2002, 05) Five-digit agreement over wide range in $x, \mu_{\rm f}^2 \Rightarrow$ reference tables

Benchmark tables for the parton evolution

Evolution of Les Houches (2001) reference input at $\mu_{\mathrm{f},0}^2 = 2~\mathrm{GeV}^2$

$$egin{array}{rll} xu_v(x,\mu_{
m f,0}^2) &=& 5.1072 \ x^{0.8} \ (1-x)^3 \ , \ \ldots \ xg \ (x,\mu_{
m f,0}^2) &=& 1.7000 \ x^{-0.1} \ (1-x)^5 \end{array}$$

with

$$lpha_{
m s}(\mu_{
m r}^2=2~{
m GeV}^2)~=~0.35$$

at LO, NLO, NNLO, for $\,\mu_{
m r} = \{0.5,\ 1,\ 2\}\,\mu_{
m f}$, with fixed / variable $\,N_{\!f}$

Use of two completely different codes. G. Salam, A.V. (2002, 05) Five-digit agreement over wide range in $x, \mu_{\rm f}^2 \Rightarrow$ reference tables

Example: (iterated) NNLO, $\mu_{
m r}=2\mu_{
m f}$, $N_f=4$ at $\mu_{
m f}^2=10^4~{
m GeV}^2$

$$egin{array}{rll} x=10^{-5}\ , & xu_v=2.9032\cdot 10^{-3}\ , & \ldots \ , & xg=2.2307\cdot 10^2\ \ldots \ x=\ 0.9\ , & xu_v=3.6527\cdot 10^{-4}\ , & \ldots \ , & xg=1.2489\cdot 10^{-6} \end{array}$$

Input shapes and factorization schemes

MS evolution: convenient, stable (see above) – but pdf's not physical Shapes for $x \rightarrow 1$, e.g., more natural in other scheme? Positivity? NLO partons (which scheme?) best choice with LO Monte-Carlos?

Input shapes and factorization schemes

MS evolution: convenient, stable (see above) – but pdf's not physical Shapes for $x \rightarrow 1$, e.g., more natural in other scheme? Positivity? NLO partons (which scheme?) best choice with LO Monte-Carlos?

Traditional alternative: DIS scheme, quarks physical via F_2 . Singlet:

$$q_S^{\mathsf{DIS}} = q_S + \alpha_{\mathsf{s}} \big[c_{2,q}^{(1)} \otimes q_S + c_{2,g}^{(1)} \otimes g \big] + \dots$$
$$g^{\mathsf{DIS}} = g - \alpha_{\mathsf{s}} \big[c_{2,q}^{(1)} \otimes q_S + c_{2,g}^{(1)} \otimes g \big] + \dots$$

Drawback: gluon transf. arbitrary except at N = 2 (momentum sum)

Input shapes and factorization schemes

MS evolution: convenient, stable (see above) – but pdf's not physical Shapes for $x \rightarrow 1$, e.g., more natural in other scheme? Positivity? NLO partons (which scheme?) best choice with LO Monte-Carlos?

Traditional alternative: DIS scheme, quarks physical via F_2 . Singlet:

$$\begin{split} q_S^{\mathsf{DIS}} &= q_S + \alpha_{\mathsf{s}} \big[\, c_{2,q}^{(1)} \otimes q_S + c_{2,g}^{(1)} \otimes g \big] + \dots \\ g^{\mathsf{DIS}} &= g - \alpha_{\mathsf{s}} \big[\, c_{2,q}^{(1)} \otimes q_S + c_{2,g}^{(1)} \otimes g \big] + \dots \end{split}$$

Drawback: gluon transf. arbitrary except at N = 2 (momentum sum)

Interesting old concept: DIS_{ϕ} scheme Furmanski, Petronzio (81) Also gluon shape physical via structure fct. F_{ϕ} of scalar coupling to $G^{\mu\nu}G_{\mu\nu}$ (\leftrightarrow Higgs in large- m_t limit) - $c_{\phi,i}^{(1,2,3)}(x)$ now computed

 \Rightarrow End-point constraints from positivity of $F_{\phi}\,,\,\ldots$

Heavy quarks in parton evolution

Below: disregard 'intrinsic charm' – can be relevant at large xPumplin, Lai, Tung (2007)

MS evolution of partons and α_s with variable number of flavours: matching of effective theories. For partons at $\mu_F = m_h$ (pole mass):

$$\begin{split} l_i^{(N_{\rm f}+1)} &= l_i^{(N_{\rm f})} + \delta_{m2} \, a_{\rm s}^2 \, A_{qq,h}^{\rm NS,(2)} \otimes l_i^{(N_{\rm f})} \\ g^{(N_{\rm f}+1)} &= g^{(N_{\rm f})} + \delta_{m2} \, a_{\rm s}^2 \left[A_{\rm gq,h}^{\rm S,(2)} \otimes q_S^{(N_{\rm f})} + A_{\rm gg,h}^{\rm S,(2)} \otimes g^{(N_{\rm f})} \right] \\ (h+\bar{h})^{(N_{\rm f}+1)} &= \delta_{m2} \, a_{\rm s}^2 \left[A_{\rm hq}^{\rm S,(2)} \otimes q_S^{(N_{\rm f})} + A_{\rm hg}^{\rm S,(2)} \otimes g^{(N_{\rm f})} \right] \end{split}$$

Coefficients: Buza et al. (95/96), [Bierenbaum, Blümlein, Klein (07)]

Heavy quarks in parton evolution

Below: disregard 'intrinsic charm' – can be relevant at large xPumplin, Lai, Tung (2007)

 $\overline{\text{MS}}$ evolution of partons and α_s with variable number of flavours: matching of effective theories. For partons at $\mu_F = m_h$ (pole mass):

$$\begin{split} l_i^{(N_{\rm f}+1)} &= l_i^{(N_{\rm f})} + \delta_{m2} \, a_{\rm s}^2 \, A_{qq,h}^{\rm NS,(2)} \otimes l_i^{(N_{\rm f})} \\ g^{(N_{\rm f}+1)} &= g^{(N_{\rm f})} + \delta_{m2} \, a_{\rm s}^2 \left[A_{\rm gq,h}^{\rm S,(2)} \otimes q_S^{(N_{\rm f})} + A_{\rm gg,h}^{\rm S,(2)} \otimes g^{(N_{\rm f})} \right] \\ (h+\bar{h})^{(N_{\rm f}+1)} &= \delta_{m2} \, a_{\rm s}^2 \left[A_{\rm hq}^{\rm S,(2)} \otimes q_S^{(N_{\rm f})} + A_{\rm hg}^{\rm S,(2)} \otimes g^{(N_{\rm f})} \right] \end{split}$$

Coefficients: Buza et al. (95/96), [Bierenbaum, Blümlein, Klein (07)]

Included in the evolution codes and benchmarks discussed above

Ignored in NNLO MRST partons, now implemented for MSTW (07) sets + more improvements, e.g., fastNLO (Kluge, Rabberts, Wobisch) instead of *K*-factors

Heavy quarks in structure functions

 $Q \gg m_c: u, d, s, g$ partons + massive c coeff. fct's, FFNS NLO: Laenen et al. (92); HVQDIS (95)

 $Q \ggg m_c$: terms $m_c/Q
ightarrow 0$ $n_f = 4$ partons (matching), m = 0 coeff. fct's, ZM-VFNS

Heavy quarks in structure functions

 $Q \gg m_c: u, d, s, g$ partons + massive *c* coeff. fct's, FFNS NLO: Laenen et al. (92); HVQDIS (95)

 $Q >>>> m_c$: terms $m_c/Q
ightarrow 0$ $n_f = 4$ partons (matching), m = 0 coeff. fct's, ZM-VFNS

 $Q \gg m_c$: terms $m_c/Q \neq 0$, but quasi-collinear logs large $n_f = 4$ pdf's, 'interpolating' coeff. functions, (GM-) VFNS ACOT; BMSN/CSN; (Roberts-) Thorne

Transition process-dependent Exp.+ th.: " $Q \gg m_c$ " for HERA $F_2^{c\bar{c}}$

Highlights of recent parton analyses (I)

CTEQ6.5, ..., W.K. Tung et al. (06)

Charm mass suppression in DIS finally implemented in fits Improved iterative treatment of inconsistent data under way, ...

Less $F_2^{car{c}} \Rightarrow$ more $u, d \Rightarrow$ higher W/Z cross section (~8%) at LHC

Highlights of recent parton analyses (I)

CTEQ6.5, ..., W.K. Tung et al. (06)

Charm mass suppression in DIS finally implemented in fits Improved iterative treatment of inconsistent data under way, ...

Less $F_2^{car{c}} \Rightarrow$ more $u, d \Rightarrow$ higher W/Z cross section (~8%) at LHC

Alekhin, Melnikov, Petriello (06)

Extension of fits (S.A., 02: DIS only) to consistent subset of DY data NNLO corr's to Drell-Yan cross sections crucial; preferred α_s low

Highlights of recent parton analyses (II)

NNPDF, L. Del Debbio et al (07)

Hybrid evolution combining advantages of N- and x-space Non-singlet (so far); neural networks to avoid parametrization bias

Width diff. at, e.g., $x \approx 0.2$ looks too big for param. bias – data sets?

Highlights of recent parton analyses (II)

NNPDF, L. Del Debbio et al (07)

Hybrid evolution combining advantages of N- and x-space Non-singlet (so far); neural networks to avoid parametrization bias

Width diff. at, e.g., $x \approx 0.2$ looks too big for param. bias – data sets?

Blümlein, Böttcher, Guffanti (06)

Global non-singlet DIS analysis with determination of α_s to N³LO $\alpha_s(M_Z) = 0.1134,41 \pm 0.002$ at N^{2,3}LO, consistent with AMP (06)

Constraints of LHC gauge-boson production

diff. $\hat{\sigma}_{\text{NNLO}}$: Anastasiou, Dixon, Melnikov, Petriello (03)

'Gold-plated' processes: NNLO perturbative accuracy better than 1%

⇒ use to improve upon pre-LHC determinations of parton densities
A. Cooper-Sarkar, M. Klein, … (this workshop)

Instead of a summary: W-mass at the LHC

M_W as function of τ_{μ}, M_Z, \ldots can discriminate between theories

Precision QCD and partons required to make the black ellipse happen