NEWS FROM LATTICE QCD

Peter Weisz

Max-Planck-Institute, Munich

Quantum Chromo Dynamics

Action (for quarks and gluons)

$$S = \int d^4x \left\{ \frac{1}{2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu} + \sum_f \bar{q}_f [i\gamma D + m_f] q_f \right\}$$

Candidate theory of the strong interactions

hard scattering (HE) - well described by Perturbation Theory (Asymptotic freedom)

also compute low energy properties of bound states (hadrons)

$$\langle \pi(t)\pi(0)\rangle \propto \int [\mathrm{d}A\mathrm{d}\bar{q}\mathrm{d}q]\mathrm{e}^{-S[A,\bar{q},q]}\pi(t)\pi(0) \sim \mathrm{e}^{-m_{\pi}t}$$

LATTICE REGULARIZATION

gauge fields associated with a links $x \longrightarrow x + a\hat{\mu}$

$$A_{\mu}(x) \to U_{\mu}(x) \sim P \exp \int_0^1 dt \, A_{\mu}(x + ta\hat{\mu}) \in SU(3)$$

quark fields q(x) defined at points x on a finite lattice Λ

$$\int [\mathrm{d}A\mathrm{d}\bar{q}\mathrm{d}q] \to \int \prod_{x \in \Lambda} \mathrm{d}U_{\mu}(x)\mathrm{d}\bar{q}(x)\mathrm{d}q(x)$$

→ a non-perturbative definition of the path integral

The action is **bilinear** in the quark fields

→ "integrate" out exactly:

$$\langle \mathcal{O}[U, \bar{q}, q] \rangle \propto \int [dU] \exp(-S[U]) \mathcal{O}[U, D[U]]$$

$$S[U] = S_{\text{gauge}}[U] - \ln \det(i\gamma D[U] + m)$$

reduces to evaluation of enormous integral (by Monte Carlo)

huge saving in computation if neglect the fermion determinant

→ "Quenched approximation" → uncontrolled systematic errors

"SERIOUS" DYNAMICAL SIMULATIONS ONLY RECENTLY

MANY SOURCES OF SYSTEMATIC ERRORS

Source	present simulations	extrapolations
finite lattice spacing	$a \sim 0.2 - 0.07 \text{fm}$	Symanzik
finite volume	$L \sim 1.5 - 2.5 \mathrm{fm}$	Lüscher
large quark mass	$m_{\pi} > \sim 300 \mathrm{MeV}$	Chiral PT

- Big effort in reducing/controlling these effects
- Setting the scales
- When do the theoretically expected behaviors set in?

UNIVERSALITY → freedom in choosing lattice action

Many different gauge and fermion actions $maintaining\ locality$ in use

Fermion actions differ on how Chiral Symmetry is treated

```
Wilson (O(a) improved): (m_0 = 0), broken, conceptually simple Staggered (Kogut, Susskind): "too much", relatively cheap Overlap (Neuberger, Ginsparg, Wilson) exact, but expensive Domain wall quarks (Kaplan): approximate Perfect action (Hasenfratz, Niedermayer): ""

Twisted mass QCD (Frezzotti, Sint): sort of a compromise
```

Claims of lattice phenomenological successes using using staggered quarks

but problems when $N_{\rm f}/4 \neq {\rm integer}$

"Rooting trick": $Det(iD + m) \rightarrow Det(iD + m)^{1/4}$ by hand!

from FIRST to SECOND PRINCIPLES!

"Rooted staggered fermions, good, bad or ugly?"

"At least ugly" (Sharpe, LAT06)

see also "The Evil that is rooting" (Creutz '07)

Wilson quarks not as expensive as previously thought!

Ops in TFlop Yr req. for an ensemble of 100 gauge fld. configs. *

$$5.00 \left[\frac{20 \text{MeV}}{m}\right]^3 \left[\frac{0.1 \text{fm}}{a}\right]^7 \left[\frac{L}{3 \text{fm}}\right]^5$$
, Ukawa, LAT01

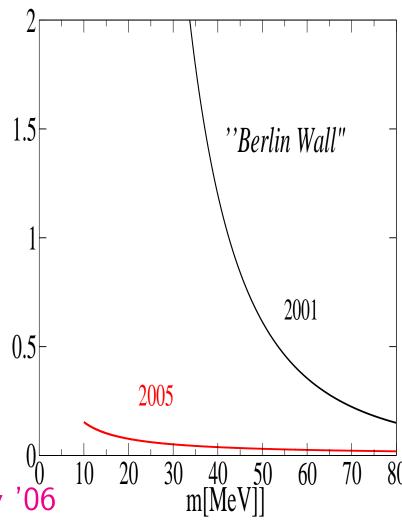
$$0.05 \left[\frac{20 \text{MeV}}{m}\right]^1 \left[\frac{0.1 \text{fm}}{a}\right]^6 \left[\frac{L}{3 \text{fm}}\right]^5$$
, Giusti, LAT06

* $N_{\rm f}=2$, $V=2L\times L^3$, ${\rm O}(a)$ -improved Wilson quarks, $m=m_{\overline{\rm MS}}(2{\rm GeV})$.

Example

 64×32^3 lattice

 $L \simeq 2.5 \text{fm}, a \simeq 0.08 \text{fm}$


Many groups similar success acceleration due to:

progress in algorithms

Hasenbusch '01, Lüscher '03, 0_0^{\perp} Urbach et al '05, Clark & Kennedy '06

better program efficiency

Cost [Tflops x year]

COMPUTING FACILITIES (incomplete list)

Peak[TFlops]

Custom computers: Blue GeneL, Jülich 46

KEK 57

PC clusters: Altix, LRZ 26

PACS-CS, Tsukuba 14

"Self-built": QCDOC, BNL 20

APE-next, Rome 8

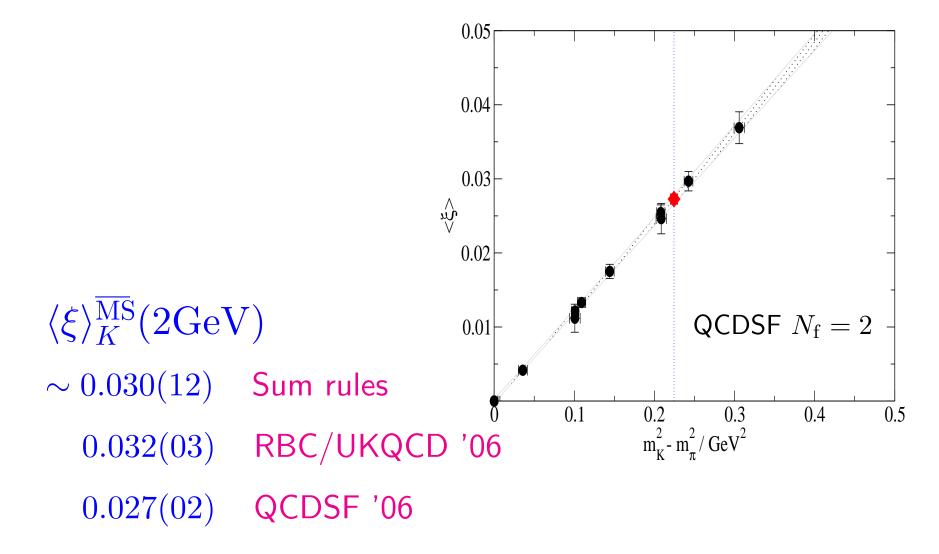
upcoming International Lattice Data Grid (storing configurations)

```
measure Euclidean lattice correlation functions: \langle \mathcal{O}_1 \mathcal{O}_2 \ldots \rangle e.g. \langle \mathcal{O}(0)\mathcal{P}(t)\rangle for large t gives information on \langle 0|\mathcal{O}|P\rangle |P\rangle: the lowest state with quantum numbers of \mathcal{P}
```

- → many quantities of interest to hadron structure:
- Spectra (resonances and phase shifts from finite volume effects (Lüscher))
- Hadronic contributions to g-2, running couplings
- Meson distribution amplitudes
- Elastic and transition form factors
- Moments of (generalized) structure functions,

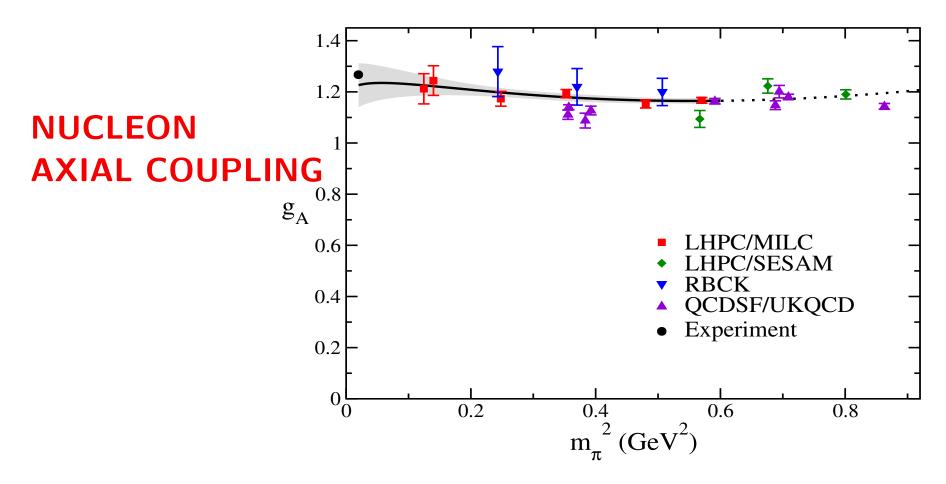
For a thorough review see Orginos, LAT06 Also Detmold SF-7, Hart HF-5

MESON DISTRIBUTION AMPLITUDES

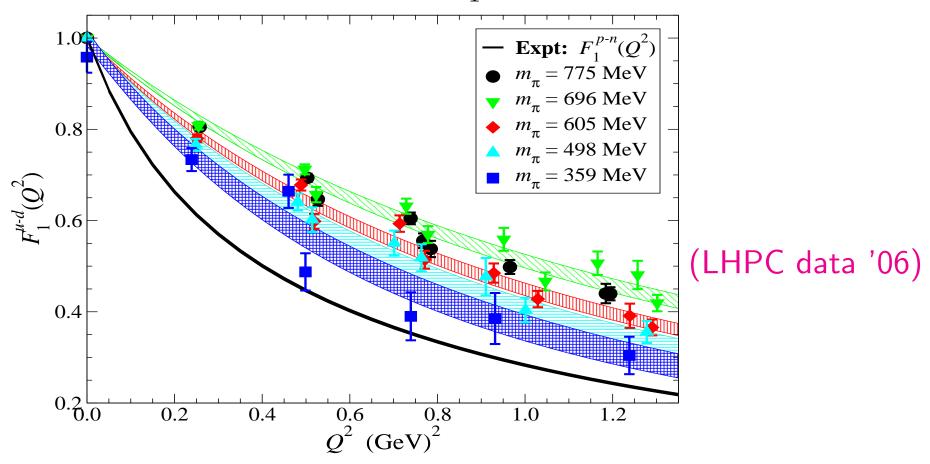

$$\langle 0|\bar{q}(z)\gamma_{\rho}\gamma_{5}P\exp\left[i\int_{-z}^{z}A(x)\cdot\mathrm{d}x\right]s(-z)|K(p)\rangle_{z^{2}=0}$$

$$=f_{K}ip_{\rho}\int_{-1}^{1}\mathrm{d}\xi\,\mathrm{e}^{i\xi p\cdot z}\phi_{K}(\xi,\mu)$$

Moments:
$$\langle \xi^n \rangle_K(\mu) = \int_{-1}^1 \mathrm{d}\xi \, \xi^n \phi_K(\xi, \mu)$$


expressed as matrix elements of local operators

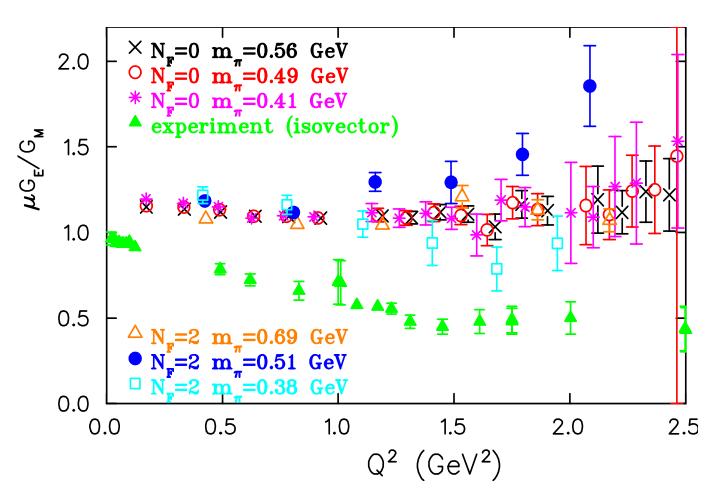
$$\langle \xi \rangle_K(\mu) f_K p_\rho p_\nu = \langle 0 | \bar{q}(0) \gamma_\rho \gamma_5 \stackrel{\leftrightarrow}{D}_\nu s(0) | K(p) \rangle$$


QCDSF results for 2nd moment:

$$\langle \xi^2 \rangle_K^{\overline{MS}}(2\text{GeV}) = 0.26(2), \ \langle \xi^2 \rangle_{\pi}^{\overline{MS}}(2\text{GeV}) = 0.27(4)$$

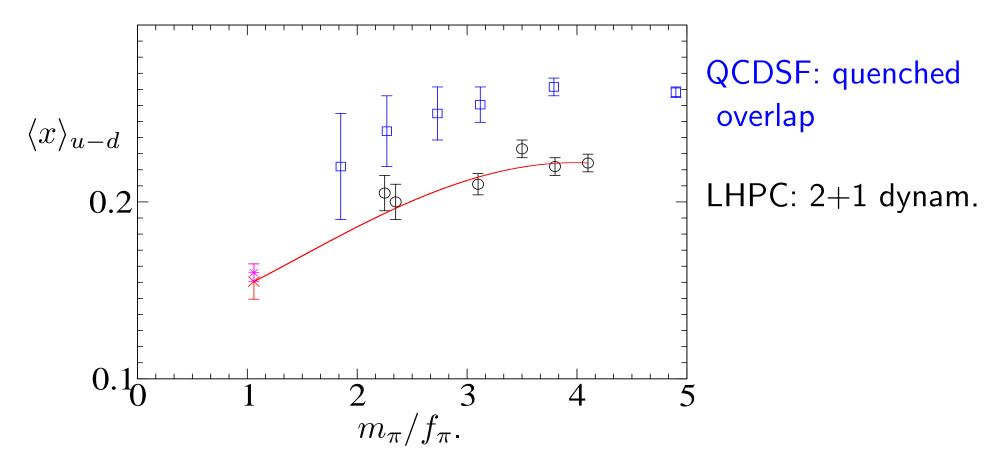
- consistent results among groups
- finite volume effects
- ullet weak dependence on m_π
- LAT06: $g_A(m_\pi = 140 \text{MeV}) = 1.23(8)$; cf exp. 1.2695(29)
- ullet dynamical 2+1 at smaller m_π under way (RBC/UKQCD/QCDSF)

ISOVECTOR F_1 **FORM FACTOR**

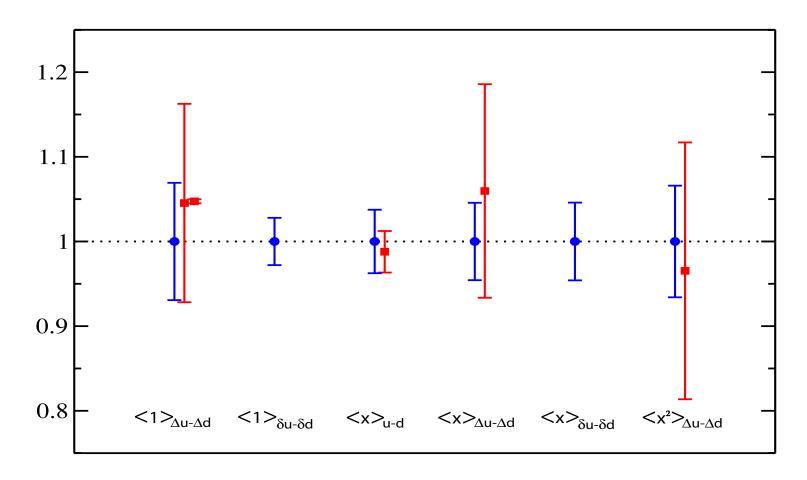


 m_{π} still large, but approach experiment as m_{π} decreases

Difficulty: momenta quantized in units $2\pi/L$ for periodic bc e.g. L=24a with $a=0.1 {\rm fm}$ gives $2\pi/L\sim 0.52 {\rm GeV}$ (Bedaque, Sachrajda et al): using twisted pbc $p_i=(2\pi n+\theta_i)/L$


Ratio of electric and magnetic isovector form factors

Alexandrou et al '06 data


Present disagreement with JLab experimental data Lattice artifacts??

MOMENTS OF STRUCTURE FUNCTIONS

large
$$\chi$$
PT logs: $\langle x
angle_{u-d} = C \left[1 - r^2 (A \ln r^2 + B) + \ldots
ight]$ $r = m_\pi/(4\pi f_\pi);$ $A = 6g_A^2 + 2 \sim 11$

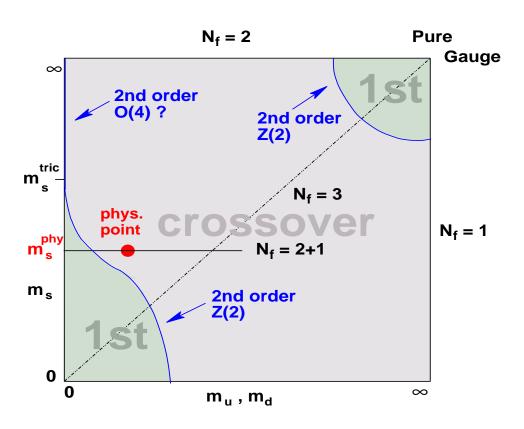
Ratios of Moments: Lattice/DIS

Chiral logs not yet seen in dynamical simulations

But if fit to χPT get good agreement with experiment

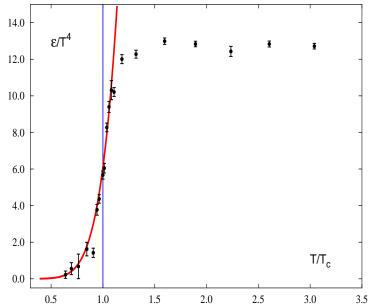
SUMMARY

- ★ much algorithmic progress in the last 5 years
- * serious dynamical quark simulations of QCD under way
- \star big effort still needed to simulate with $m_{\pi} \sim 140 {\rm MeV}$
- ★ chiral logs not yet clearly seen
- ***** lattice $+ \chi PT$ gives reasonable agreement with experiment
- * the (effort to) control the various systematic errors is essential for the quality of a lattice experiment


Lattice EXPECTATIONS for the NEXT YEARS

(anonymous lattice astrologer '07)

Dynamical quarks (2+1 flavors)


- 2008: reasonable results for $m_\pi \sim 200 {
 m MeV}$
- 2010: reliable results for $m_\pi \sim 200 {
 m MeV}$
- 2012: reasonable results for $m_\pi \sim 140 {
 m MeV}$
- 2014: reliable results for $m_\pi \sim 140 {\rm MeV}$

Finite Temperature

$T_c \sim 180(20) \mathrm{MeV}$

Heller LAT06

