Compatibility of phenomenological dipole cross sections with the Balitsky-Kovchegov equation

Andre Utermann, Vrije Universiteit Amsterdam

in collaboration with

Daniël Boer and Erik Wessels

based on: hep-ph/0701219

Outline

Situation:

Successful description of various data within the dipole model

Question:

Are the implied dipole cross-sections comparable with nonlinear BK evolution

1. The dipole cross section

- Parameterizations and geometric scaling (violation)
- Phenomenology

2. The BK equation

- The solution
- Definition of the saturation scale

3. The anomalous dimension γ

- In momentum space
- In coordinate space

1. The dipole cross section

• HERA data on structure function F_2 at low x ($x \lesssim 0.01$) quite well described by [Golec-Biernat, Wüsthoff]

$$N_{\text{GBW}}(r, \mathbf{x}) = 1 - \exp\left[-\frac{1}{4}r^2Q_s^2(\mathbf{x})\right]$$

- r denotes the transverse size of the dipole
- -x dependence of the saturation scale:

$$Q_s(x) = 1 \, {\rm GeV} \, \left(\frac{x_0}{x}\right)^{\lambda/2}$$
, where $x_0 \simeq 3 \times 10^{-4}$ and $\lambda \simeq 0.3$

Consistent with NLO BFKL evolution and LO BK with running coupling e.g. [Müller & Triantafyllopoulos, 2002]

- Basic feature of GBW model: geometric scaling $N(rQ_s) \Rightarrow F_s(Q^2/Q_s^2(x))$
- But more precise data require at large Q^2 scaling violating modifications e.g. by taking DGLAP evolution into account [Bartels et al 2002], [Gotsman et al 2002]

Geometric scaling violation

- Theoretical implications from evolution equations
 - Saturation regime $Q^2 < Q_s^2(x)$: geometric scaling expected
 - Above Q_s : a growing region $Q_s^2(x) < Q^2 < Q_{qs}^2$ where scaling holds approx.
- Scaling violation can be introduced by modifying the GBW model ($\gamma = 1$):

$$N_{\text{pheno}}(\mathbf{r}, \mathbf{x}) = 1 - \exp\left[-\frac{1}{4}(\mathbf{r}^2 Q_s^2(\mathbf{x}))^{\gamma(\mathbf{r}, \mathbf{x})}\right]$$

- Small r: BFKL limit is recovered and γ is related to the anom. dimension:

$$N(\mathbf{r}, \mathbf{x}) \sim x \, g(x, \mu(r)^2) \quad \Rightarrow$$

$$\frac{d \, x \, g(x, \mu(r)^2)}{d \, \log x_0 / \mathbf{x}} \sim \mathbf{\gamma}(\mathbf{r}, \mathbf{x}) \, x \, g(x, \mu(r)^2)$$

- ullet From linear BFKL evol. with satur. bound. condition: $\gamma(r=1/Q_s)=0.628\equiv\gamma_s$
 - Note, not from complete non-linear BK evolution

- Expectations on $\gamma(r,x)$
 - Fixed x and $r_t \to 0$: $\gamma \to 1$ to reproduce the limit $N \sim r^2$
 - At Q_s : γ is a constant $\gamma(r_t=1/Q_s,x)=\gamma_s$ geometric scaling for N
 - $\gamma_s \simeq 0.628$: the BFKL saddle point with sat. bound. cond. e.g. [lancu et al 2002, Mueller et al 2002, Triantafyllopoulos 2002]
- ullet A good description of hadron production in d+Au collisions at **RHIC** with [Dumitru et al 2006]

$$\gamma(r,x) = \gamma_s + (1 - \gamma_s) \frac{\log(1/(r^2 Q_s^2(x)))}{\lambda_y + d\sqrt{y} + \log(1/(r^2 Q_s^2(x)))}, \ y = \log x_0/x$$

- Ansatz $N(r,x) = 1 \exp[-1/4(r^2Q_s^2(x))^{\gamma(r,x)}]$ with similar forms for γ used in various models (also in DIS)
- Question we want to address:

Are these expectations compatible with the numerical solution of the BK equation?

2. The BK equation

• Mean-field approximation: dipole evolution described by the BK equation [Balitsky 1995, Kovchegov 1999]:

$$\frac{\partial N(r, y)}{\partial y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{d^2 z \, r^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2} \\
[N(|\boldsymbol{x} - \boldsymbol{z}|, y) + N(|\boldsymbol{z} - \boldsymbol{y}|, y) - N(r, y) - N(|\boldsymbol{x} - \boldsymbol{z}|, y)N(|\boldsymbol{z} - \boldsymbol{y}|, y)] \\
\bar{\alpha}_s = \alpha_s \frac{N_c}{\pi}, \qquad r = |\boldsymbol{x} - \boldsymbol{y}|, \qquad y = \log x_0/x$$

- Evolution depends effectively on combination $Y=\mathbf{\emph{y}}\,\bar{\alpha}_s$
- Solution taken from a program [Enberg et al 2005] in terms of the Fourier transf.

$$\mathcal{N}(\mathbf{k}, \mathbf{y}) \equiv \int \frac{d^2 \mathbf{r}}{2\pi r^2} e^{i\mathbf{k}\cdot\mathbf{r}} N(\mathbf{r}, \mathbf{y}) = \int_0^\infty d\mathbf{r} \, \mathbf{r} \, J_0(\mathbf{k}\mathbf{r}) \, N(\mathbf{r}, \mathbf{y})$$

- In terms of ${\mathcal N}$ the BK equation reads

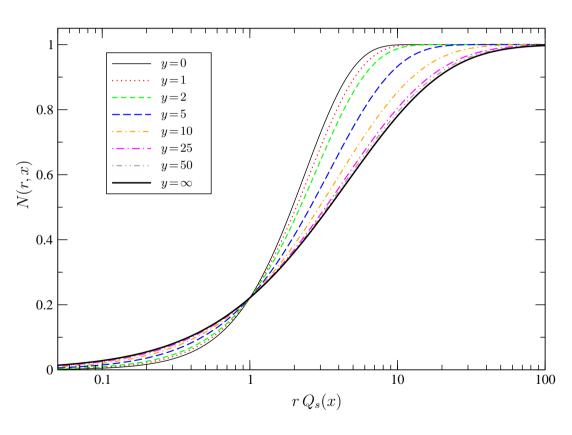
$$\partial_{\mathbf{Y}} \mathcal{N} = \underbrace{\chi(-\partial_L)}_{\mathsf{BFKL}} \mathcal{N} - \mathcal{N}^2, \quad L = \log(k^2/k_0^2)$$

Solution of the BK equation and the definition of Q_s

• First step: calculating N(r,x) via a Fourier transform of $\mathcal{N}(k,x)$

$$N(r, \mathbf{x}) = r^2 \int \frac{d^2k}{2\pi} e^{-i\mathbf{k}\cdot\mathbf{r}} \mathcal{N}(\mathbf{k}, \mathbf{x}) = r^2 \int_0^\infty d\mathbf{k} \, k \, J_0(\mathbf{k}r) \, \mathcal{N}(\mathbf{k}, \mathbf{x})$$

- **Second Step:** Fixing the saturation scale: Ansatz $N(r) = 1 \exp[-1/4(r^2Q_s^2)^{\gamma}]$ requires $N(r = 1/Q_s) \approx 0.22$
- As usual: $\log Q_s^2 \propto y = \log x_0/x$
- $-y \to \infty$: geometric scaling $N(r,x) \to N_{\infty}(rQ_s(x))$

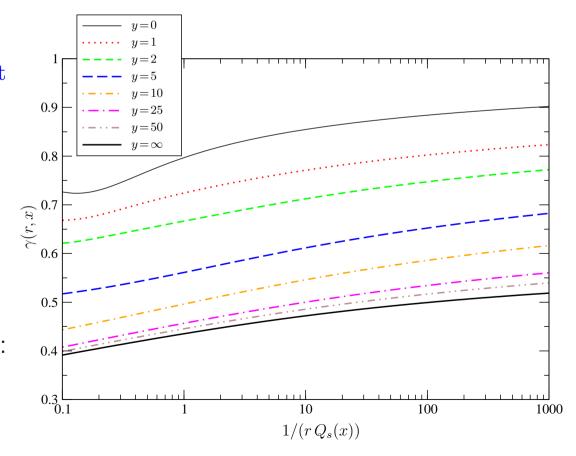


• For finite rapidities $y = \log x_0/x$ a significant scaling violation $\Rightarrow \gamma$ is not constant!

3. The anomalous dimension $\gamma(r,y)$

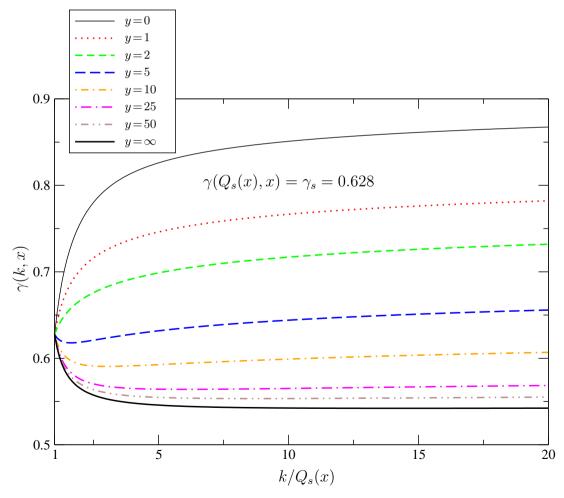
- Procedures to calculate $Q_s(x)$ and $N(r,x) \stackrel{!}{=} 1 \exp[-\frac{1}{4}(r^2Q_s^2)^{\gamma}]$ are now given $\Rightarrow \gamma(r,x) = \log\left[\log\left[1/(1-N(r,x))^4\right]\right]/\log[r^2Q_s^2(x)]$
- Remarkable differences from the discussed expectations

- Finite y: $\gamma(r=1/Q_s, x) \neq \text{const}$ \Rightarrow scaling violat. in sat. region
- Asympt. $y = \log x_0/x \to \infty$: $\gamma(r, x) = \gamma_{\infty}(rQ_s) + \mathcal{O}(1/y)$
- $-\gamma_{\infty} \approx 0.44$ at Q_s is ≤ 0.628
- $-r \rightarrow 0$ for finite y: $\gamma \rightarrow \gamma_0 = 1$
- Asymptotic y and $1/(rQ_s)$: $\gamma_{\infty}(rQ_s) \rightarrow 0.628 = \gamma_s$



$\gamma(k,x)$ in momentum space

- Essential part of former phenomel. approach: $\gamma(r) \approx \gamma(\langle r \rangle)$ where $\langle r \rangle \sim 1/k$ $\Rightarrow \gamma$ depends effectiv. on $k \Rightarrow N(r, x; \gamma)$ is not only a Fourier transf. of $\mathcal{N}(k, x)$
- \Rightarrow New freedom in fixing Q_s , e.g. $\mathcal{N}(k = Q_s(x)) = \text{const} \Rightarrow \gamma$ is const. at Q_s !
- Obvious choice $\mathcal{N}(Q_s) \approx 0.19$ $\Rightarrow \gamma(Q_s(x), x) = 0.628$
- Small y: γ rises monot. with k
- Larger y: different then DHJ: γ drops towards smaller values
- $y = \log x_0/x \to \infty:$ $\gamma(r, x) = \gamma_\infty(rQ_s) + \mathcal{O}(1/y)$
- For $k < Q_s(x)$:
 with the given Ansatz no description of $\mathcal{N}(k)$ possible

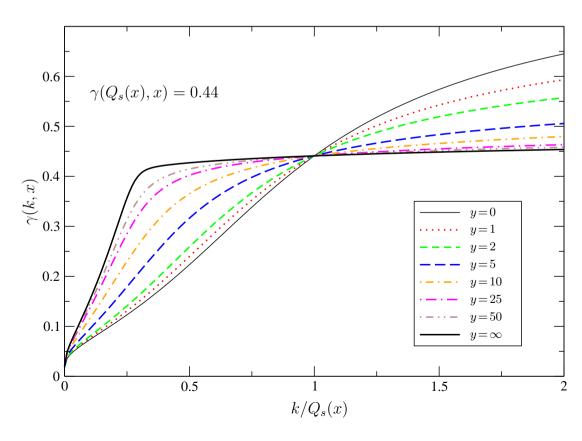


$\gamma(k,x)$ for lower γ_s

- Possible reason for these problems: γ tends towards smaller values then 0.628 \Rightarrow Fix $\gamma(x,k)$ at $k=Q_s$ to be smaller
- Implied choice from investigating $\gamma(r,x)$:

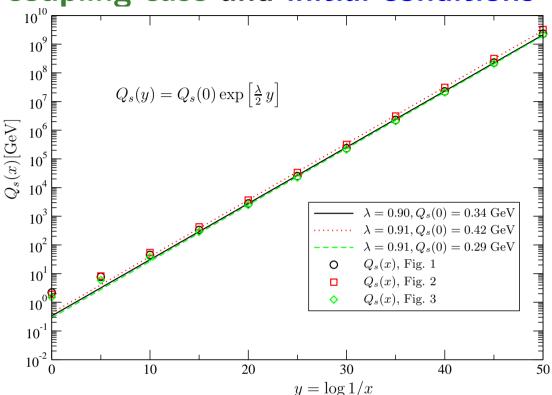
$$\gamma(k = Q_s(x), x) = \lim_{x \to 0} \gamma(r = 1/Q_s(x), x) = 0.44 \Rightarrow \mathcal{N}(Q_s) = 0.28$$

- γ rises for all x with $k/Q_s(x)$
- $-\gamma$ exists also below Q_s
- $k > Q_s$ fit similar to DHJ: $\gamma(k, x) = 0.44 + 0.56$ $\frac{\log(k^2/Q_s^2)}{\lambda y + d\sqrt{y} + \log(k^2/Q_s^2)}, d \approx 3, \lambda \approx 0.9$
- $-y = \log x_0/x \to \infty:$ $\gamma(r,x) = \gamma_\infty(rQ_s) + \mathcal{O}(1/y)$



saturation scale, running coupling case and initial conditions

- Definitions of Q_s are consistent with each other and with usual expectations $\log Q_s^2 \propto y$



- The running coupling case was also investigated
 - As expected, the saturation scale is signif. smaller $\log Q_s^2(y) \propto \sqrt{y}$
 - $\gamma(rQ_s(y),y)$ and $\gamma(k/Q_s(y),y)$ are almost unchanged
- Initial conditions at $y = \log x/x_0 = 0$:
 - $-\mathcal{N}(k, x = x_0)$ inspired by the MV model were used $\Rightarrow \gamma \to 1$ for $r \to 0$
 - In general: $\gamma_{\infty}(rQ_s)$ is independent of i.c. as long as $\gamma(x=x_0)<\gamma_s\approx 0.628$

Conclusion & Outlook

- Finite $y = \log x_0/x$: solut. of the BK eq. does not show exact geometric scaling
 - Therefore $\gamma(r,x)$ is not a function of $rQ_s(x)$ exclusively
 - In particular not even a constant at the saturation scale $(r=1/Q_s)$
- $y \to \infty$ geometric scaling is recovered: $\gamma(r,x) \to \gamma_{\infty}(rQ_s(x))$
 - γ_{∞} reads 0.44 at $r=1/Q_s$
 - Only for $y \to \infty$ and $rQ_s \to 0$, $\gamma_\infty \approx \gamma_s \approx 0.628$ is recovered
- No conflict to theo. consid. since only for small r, $\gamma_{\rm pheno}$ and $\gamma_{\rm BFKL}$ are equal But used parameterizations of $\gamma(r,x)$ or N(r,x) in the models are questionable
- $\gamma(r,x) \to \gamma(1/k,x)$ leads to a solution with a fixed value $\gamma(k=Q_s,x)$
 - Usual choice $\gamma(k=Q_s,x)=\gamma_s=0.628$ yields some unwanted features
 - Keeping $\gamma(k=Q_s,x)$ fixed at a smaller value, e.g. 0.44, seems more suitable
- In the future, modification of e.g. the DHJ model compatible with BK equation and the data can be considered