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Outline

Situation:

Successful description of various data within the dipole model
Question:
Are the implied dipole cross-sections comparable with nonlinear BK evolution

1. The dipole cross section

– Parameterizations and geometric scaling (violation)
– Phenomenology

2. The BK equation

– The solution
– Definition of the saturation scale

3. The anomalous dimension γ

– In momentum space
– In coordinate space



1. The dipole cross section

• HERA data on structure function F2 at low x (x . 0.01) quite well described by
[Golec-Biernat, Wüsthoff]

NGBW(r, x) = 1 − exp

[

−1

4
r2Q2

s(x)

]

– r denotes the transverse size of the dipole
– x dependence of the saturation scale:

Qs(x) = 1 GeV
(x0

x

)λ/2

, where x0 ≃ 3 × 10−4 and λ ≃ 0.3

Consistent with NLO BFKL evolution and LO BK with running coupling
e.g. [Müller & Triantafyllopoulos, 2002]

• Basic feature of GBW model: geometric scaling N(rQs) ⇒ Fs(Q
2/Q2

s(x))

• But more precise data require at large Q2 scaling violating modifications
e.g. by taking DGLAP evolution into account [Bartels et al 2002], [Gotsman et al 2002]



Geometric scaling violation

• Theoretical implications from evolution equations

– Saturation regime Q2 < Q2
s(x): geometric scaling expected

– Above Qs: a growing region Q2
s(x) < Q2 < Q2

gs where scaling holds approx.

• Scaling violation can be introduced by modifying the GBW model (γ = 1):

Npheno(r, x) = 1 − exp

[

−1

4
(r2Q2

s(x))γ(r,x)

]

– Small r: BFKL limit is recovered and γ is related to the anom. dimension:

N(r, x) ∼ x g(x, µ(r)2) ⇒
d x g(x, µ(r)2)

d log x0/x
∼ γ(r, x) x g(x, µ(r)2)

• From linear BFKL evol. with satur. bound. condition: γ(r = 1/Qs) = 0.628 ≡ γs

– Note, not from complete non-linear BK evolution



• Expectations on γ(r, x)

– Fixed x and rt → 0: γ → 1 to reproduce the limit N ∼ r2

– At Qs: γ is a constant γ(rt = 1/Qs, x) = γs⇒ geometric scaling for N
– γs ≃ 0.628: the BFKL saddle point with sat. bound. cond.

e.g. [Iancu et al 2002, Mueller et al 2002, Triantafyllopoulos 2002]

• ⇒ A good description of hadron production in d + Au collisions at RHIC with
[Dumitru et al 2006]

γ(r, x) = γs + (1 − γs)
log(1/(r2Q2

s(x)))

λy + d
√

y + log(1/(r2Q2
s(x)))

, y = log x0/x

• Ansatz N(r, x) = 1 − exp[−1/4(r2Q2
s(x))γ(r,x)] with similar forms for γ

used in various models (also in DIS)

• Question we want to address:
Are these expectations compatible with the numerical solution of the BK equation?



2. The BK equation

• Mean-field approximation: dipole evolution described by the BK equation
[Balitsky 1995, Kovchegov 1999]:

∂N(r, y)

∂y
=

ᾱs

2π

∫
d2z r2

(x − z)2(y − z)2

[N(|x − z|, y) + N(|z − y|, y) − N(r, y) − N(|x − z|, y)N(|z − y|, y)]

ᾱs = αs
Nc

π
, r = |x − y| , y = log x0/x

– Evolution depends effectively on combination Y = y ᾱs

• Solution taken from a program [Enberg et al 2005] in terms of the Fourier transf.

N (k, y) ≡
∫

d2r

2π r2
eik·rN(r, y) =

∫ ∞

0

dr r J0(kr) N(r, y)

– In terms of N the BK equation reads

∂Y N = χ(−∂L)
︸ ︷︷ ︸
BFKL kernel

N −N 2 , L = log(k2/k2
0)



Solution of the BK equation and the definition of Qs

• First step: calculating N(r, x) via a Fourier transform of N (k, x)

N(r, x) = r
2
∫

d2k

2π
e
−ik·r N (k, x) = r

2
∫ ∞

0

dk k J0(kr)N (k, x)

– Second Step: Fixing the
saturation scale: Ansatz
N(r) = 1 − exp[−1/4(r2Q2

s)
γ]

requires N(r = 1/Qs) ≈ 0.22

– As usual:
log Q2

s ∝ y = log x0/x

– y → ∞: geometric scaling
N(r, x) → N∞(rQs(x)))
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• For finite rapidities y = log x0/x a significant scaling violation
⇒ γ is not constant!



3. The anomalous dimension γ(r, y)

• Procedures to calculate Qs(x) and N(r, x)
!
= 1 − exp[−1

4(r
2Q2

s)
γ] are now given

⇒ γ(r, x) = log
[
log

[
1/(1 − N(r, x))4

]]
/ log[r2 Q2

s(x)]

• Remarkable differences from the discussed expectations

– Finite y: γ(r=1/Qs, x) 6= const

⇒ scaling violat. in sat. region

– Asympt. y = log x0/x → ∞:
γ(r, x) = γ∞(rQs) + O(1/y)

– γ∞ ≈ 0.44 at Qs is ≤ 0.628

– r → 0 for finite y: γ → γ0 = 1

– Asymptotic y and 1/(rQs):
γ∞(rQs) → 0.628 = γs
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γ(k, x) in momentum space

• Essential part of former phenomel. approach: γ(r) ≈ γ(〈r〉) where 〈r〉 ∼ 1/k
⇒ γ depends effectiv. on k ⇒ N(r, x; γ) is not only a Fourier transf. of N (k, x)

• ⇒ New freedom in fixing Qs, e.g. N (k = Qs(x)) = const ⇒ γ is const. at Qs!

– Obvious choice N (Qs) ≈ 0.19
⇒ γ(Qs(x), x) = 0.628

– Small y: γ rises monot. with k

– Larger y: different then DHJ:
γ drops towards smaller values

– y = log x0/x → ∞:
γ(r, x) = γ∞(rQs) + O(1/y)

– For k < Qs(x):
with the given Ansatz no
description of N (k) possible
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γ(k, x) for lower γs

• Possible reason for these problems: γ tends towards smaller values then 0.628
⇒ Fix γ(x, k) at k = Qs to be smaller

• Implied choice from investigating γ(r, x):
γ(k = Qs(x), x) = limx→0 γ(r = 1/Qs(x), x) = 0.44 ⇒ N (Qs) = 0.28

– γ rises for all x with k/Qs(x)

– γ exists also below Qs

– k > Qs fit similar to DHJ:
γ(k, x) = 0.44 + 0.56

log(k2/Q2
s)

λy+d
√

y+log(k2/Q2
s)

, d ≈ 3, λ ≈ 0.9

– y = log x0/x → ∞:
γ(r, x) = γ∞(rQs) + O(1/y)
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saturation scale , running coupling case and initial conditions

– Definitions of Qs are consistent
with each other and with usual
expectations log Q2

s ∝ y
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Qs(y) = Qs(0) exp
[

λ

2
y
]

λ = 0.90, Qs(0) = 0.34 GeV

λ = 0.91, Qs(0) = 0.42 GeV

λ = 0.91, Qs(0) = 0.29 GeV

y = log 1/x

• The running coupling case was also investigated

– As expected, the saturation scale is signif. smaller log Q2
s(y) ∝ √

y
– γ(rQs(y), y) and γ(k/Qs(y), y) are almost unchanged

• Initial conditions at y = log x/x0 = 0 :

– N (k, x = x0) inspired by the MV model were used ⇒ γ → 1 for r → 0
– In general: γ∞(rQs) is independent of i.c. as long as γ(x = x0) < γs ≈ 0.628



Conclusion & Outlook

• Finite y = log x0/x: solut. of the BK eq. does not show exact geometric scaling

– Therefore γ(r, x) is not a function of rQs(x) exclusively
– In particular not even a constant at the saturation scale (r = 1/Qs)

• y → ∞ geometric scaling is recovered: γ(r, x) → γ∞(rQs(x))

– γ∞ reads 0.44 at r = 1/Qs

– Only for y → ∞ and rQs → 0, γ∞ ≈ γs ≈ 0.628 is recovered

• No conflict to theo. consid. since only for small r, γpheno and γBFKL are equal
But used parameterizations of γ(r, x) or N(r, x) in the models are questionable

• γ(r, x) → γ(1/k, x) leads to a solution with a fixed value γ(k = Qs, x)

– Usual choice γ(k = Qs, x) = γs = 0.628 yields some unwanted features
– Keeping γ(k = Qs, x) fixed at a smaller value, e.g. 0.44, seems more suitable

• In the future, modification of e.g. the DHJ model compatible with BK equation
and the data can be considered


