

Motivation

- Heavy flavour production in DIS is a test of pQCD providing an additional hard scale M to the momentum transfer of the boson Q and p_t
- Beauty production is of increasing interest for higher energies -> LHC

 F₂^{bb} very useful to understand the effect of m_b in different theoretical QCD approaches

Beauty contribution to the proton structure function F_2

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left\{ \left[1 + (1-y)^2 \right] F_2(x,Q^2) - y^2 F_L(x,Q^2) + \dots x F_3 \right\}_{\text{at high}} Q^2$$

 $\frac{d^2 \sigma^{ep}}{d\Omega^2 dx} \propto F_2(x, Q^2)$

 $\frac{d^2 \sigma^{ep \to b\overline{b}X}}{dQ^2 dx} \propto F_2^{b\overline{b}}(x, Q^2)$

Heavy Flavour production mechanism

Dominant process in ep-collisions: Boson-Gluon-Fusion

Kinematic variables:

- $Q^2 = -q^2$ photon virtuality, squared momentum transfer
 - Bjorken scaling variable, for $Q^2 > (2m_Q)^2$: momentum fraction of p constituent

Kinematic regime:

• Deep inelastic scattering (DIS): $Q^2 > 1 \text{GeV}^2$

Multiple scales:

- ~ 5 GeV **m**_b
- $Q^2 \gtrsim 1 \text{ GeV}^2 \text{ in DIS}$
- $p_t^{b} \sim \text{typically few GeV} \rightarrow \text{different pQCD approaches}$
 - good testing ground for pQCD

pQCD approximations

Massive scheme:

 e^+

• b massive

 α

- neglects $[\alpha_s \ln (Q^2/m_b^2)]^n$
- scale Q^2 , m_b , p_t

► *b* produced perturbatively (not part of the Proton or Photon)

h

ħ

Massless scheme:

- b massless
- resums $[\alpha_s \ln (Q^2/m_b^2)]^n$
- scale: Q^2 , p_t
- \rightarrow b also in Proton and Photon

Variable flavour number scheme (VFNS):

- massive at small Q²
- massless at large Q²

р

Beauty identification

Process :

$e p \rightarrow e b\overline{b} X \rightarrow e \mu jet X'$

Cross section

Beauty cross section for the DIS process:

$$e p \rightarrow e b\overline{b} X \rightarrow e \mu jet X$$

Kinematic range:

Data: $\sigma_{b\bar{b}} = 77.1 \pm 7.8 \text{ (stat.)} \pm \frac{9.6}{14.9} \text{ (sys.) pb}$ MC (LO+PS): $\sigma_{bb} = 31.0 \text{ pb}$ NLO (HVQDIS): $\sigma_{b\bar{b}} = 32.9 \pm 3.3$ (sys.) pb (2.3σ) $\mu_{\rm R F}^2 = p_t^2 + 4m_b^2$ (simultaneous variation: factor 1/4 to 4) $m_{b} = 4.75 \text{ GeV}$ (variation: 4.5 GeV to 5 GeV) Peterson frag. function $\varepsilon = 0.0035$ Proton parton distribution: CTEQ5F4 (fixed 4 flavour) NLO ($\mu = Q^2$): $\sigma_{bb} = 41 \text{ pb}$ NLO ($\mu=Q^2$; $m_h=4.3$ GeV) $\sigma_{hh}=49$ pb

DIS 2007 Munich - F2bb at ZEUS - Benjamin Kahle

19th April 2007

DIS 2007 Munich - F2bb at ZEUS - Benjamin Kahle

DIS 2007 Munich - F2bb at ZEUS - Benjamin Kahle

9

Calculation of

 F_2^{bb} = beauty contribution to F_2

HVQDIS:B. W. Harris, *Electroproduction of Heavy Quarks at NLO*, Proceedings of American Physical Society,
Division of Particles and Fields, Minneapolis, 1996

19th April 2007

DIS 2007 Munich - F2bb at ZEUS - Benjamin Kahle

10

F₂^{bb} measurement

The reduced cross section for data is the reduced cross section of the NLO multiplied by the ratio of data to NLO in a x,Q^2 bin:

$$\widetilde{\sigma}_{data}^{b\overline{b}}(x,Q^2) = \widetilde{\sigma}_{NLO}^{b\overline{b}}(x,Q^2) \xrightarrow{d^2 \sigma_{data}^{b\overline{b} \to \mu}} \underbrace{d^2 \sigma_{NLO}^{b\overline{b} \to \mu}}_{d x d Q^2} \xrightarrow{d^2 \sigma_{NLO}^{b\overline{b} \to \mu}} \underbrace{d^2 \sigma_{NLO}^{b\overline{b} \to \mu}}_{d x d Q^2}$$
Cross section for
$$e p \to e b\overline{b} X \to e \mu \text{ jet } X'$$

NLO using HVQDIS with same settings as for $\tilde{\sigma}^{b\bar{b}}$ (but requiring SL decay to μ and jet)

H1 uses the impact parameter method to measure F_2^{bb} and F_2^{cc} with an inclusive charm and beauty sample of 57pb⁻¹: H1 Collab., A. Aktas et al., Eur. Phys. J. C45 (2006) 23-33

bb at ZEUS and H1

bb vs. Q^2

Same ZEUS data. Some points are recalculated for other values of x to be comparable with H1 data and theory curves.

PDF Schemes and Parameters

PDF	Order	Scheme, Nf	μ ²	M _b (GeV)
-· MRST04	α_s^2	VFNS	Q ²	4.3
— MRST NNLO	$\alpha_s{}^3$	VFNS	Q ²	4.3
CTEQ6HQ	α_s^2	VFNS	Q ²	4.5
– – HVQDIS+CTEQ5F4	α_s^2	FFNS, 4	p_t^2 +4 M^2	4.75
CTEQ5F3	α_s^2	FFNS, 3	Q ²	4.5
MRST FF	α_s^2	FFNS, 3	Q ²	4.3
CTEQ6.5	α_s^2	VFNS	Q ² +M ²	4.5

Theory predictions except HVQDIS+CTEQ5F4 provided by P.D.Thompson, hep-ph/0703103

DIS 2007 Munich - F2bb at ZEUS - Benjamin Kahle

FFNS vs. VFNS and NLO vs. NNLO

Х

MRST vs. CTEQ gluons and scale

MRST VFNS vs. CTEQ VFNS

Summary and Outlook

- First measurement of F₂^{bb} at ZEUS (39 pb⁻¹),
 ~10 times more data to come -> much reduced errors
- Results agree with H1's using a very different method to obtain F₂^{bb} but similar uncertainties (both statistical and systematical)
- NLO predictions consistent with data (within large spread)
- Measurement of F₂^{bb} at high Q² will allow validation of b-PDF for Tevatron/LHC

Kinematic plane (ZEUS)

 (x,Q2) values chosen for F₂^{bb} to compare with H1's results

bb at ZEUS and H1

NLO calculations

The calculation of the NLO QCD visible cross section predictions proceeds in three steps:

- HVQDIS (B.Harris, J.Smith, hep-ph/9503484):
 γ*g→bb, γ*g→bbg, γ*q→bbq, etc. (pointlike only) using CTEQ5F4 (FFNS) PDF
- Fragmentation of the **b-quark** into a **B-meson** (Peterson function with ε=0.0035)
- Semileptonic decay of the B-meson

(Muon momentum spectrum extracted from RAPGAP, including primary and secondary muons)

Extrapolation to full phase-space

Q ²	Extrapolation factor:
25 GeV ²	~6
110 GeV ²	~4
200 GeV ²	~3

Similar to extrapolations for F_2^{cc}

Extrapolation factor excluding branching fraction to μ of 0.3924

Extrapolation factor includes p_t^{b} and η^{b} spectrum, fragmentation, and decay kinematics (jet and μ)

Inclusive lifetime tags

