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e Develop general formalism to address semi-inclusive processes at high energies and
including multiple rescatterings. Inclusive multiple gluon production is in my next talk

e High energy diffraction beyond the dipole (large IN. and target factorization)
approximation
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(a) Projectile diffraction with target scattered elastically Yu. Kovchegov and G. Levin; 2001; (b)

Projectile diffraction with target diffracting in a small rapidity interval; (c) Projectile scatters elastically.

e HE diffraction with multiple gaps. Evol. eqgs. with respect to total rapidity and gap(s).
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The results are complex. Let us focus on formalism instead ...



High energy evolution of hadronic wavefunction

Hadron wave function in the gluon Fock space

W) = ¥[a/"(x)]|0) [¥) = |v)

The evolved wave function

[Win) = Qv (p, a)|v); lv) = [v) ® [0a)

Gluon cloud operator in the dilute limit

Cy = Qy(p — 0) = Exp [z /d 2 b9(2) / 1/2|k+|1/2 [l 2) + aga(k+,z))]] |

The classical WW field
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High energy scattering

The system emerges from the collision region with the wave function

Wouwt) = S|U;) = SQy |v)
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Eikonal scattering for fast gluons
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S(z) = P exp {i/da: Taaj;(x,x)} .



Evolution of the diagonal element of the S-matrix operator 1 = (Uout| Win)
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The gluon production amplitude
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The generators of the left/right color rotations
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Semi-inclusive reactions

The system emerges from the collision at ¢ = 0 and keeps evolving to the asymptotic
time t — +400, at which point the measurement of an observable O is made

(O) = (v] QL 1 — 8Ny & QL (1 — 8)Qy |v)

Useful trick (similar to Schwinger-Keldish formalism):
introduce one target (.S) for the amplitude and another target (.S) for the conjugate:

Oy[S,8] = (Pl (1 — 8Hhay O 0l 1 — 5y |P,)

High energy evolution of the observable
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The Hamiltonian H3 M. Hentschinski, H. Weigert and A. Schafer (2005)

Hy[S, 5] = Hy[S] + Hi[5] + 2 / Q" (= [S]) @ (= [5))

Hy[S] = B/ 5] = / Q" (= [S]) Q(= [S])

H,[S,S] = H[S]+ Hy|
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Uy, _v, = Bap[— Hz (Y1 — Y3)] Uy, vy, = Exp[— Hy (Y1 — Y)]



Formal solution for inclusive diffraction with multiple gaps and multiple rescatterings

o ~ [ DS DSW'S]6(S=5) Uy, Uy, +++ Uy, Ub oy /1S, 8]




Things become less formal and more useful when passing to the dipole limit

Introduce dipole degrees of freedom.

1
Sey = — tr[Sp(x) Sh(y)];
N
However we need to remember that the factorization

(s(z,y) s(u,v))r = (s(z,y))r (s(u,v))r

is not always valid. Very important in order to include target diffractive states

For processes involving transverse momentum transfer, quadrupole operator is needed

e = 2 1Sk (@) Sh(y) Se(w) Shv)]

No other higher multiplet operators if the projectile at rest is made only out of dipoles!



