# Prompt photon production in $p-A$ collisions at the LHC and the extraction of gluon shadowing 

Thierry Gousset (SubaTech, Nantes, France)

in collaboration with François Arleo (CERN and LAPTH)
April 18, 2007

## Definition

Motivations
Definition
Current knowledge
Inclusive photons
Isolated photons
Outlook

Leading twist modification of per-nucleon parton densities

$$
\begin{aligned}
u_{p}\left(x, Q^{2}\right) & \rightarrow u_{A}\left(x, Q^{2}\right), \\
G_{p}\left(x, Q^{2}\right) & \rightarrow G_{A}\left(x, Q^{2}\right), \ldots
\end{aligned}
$$

also described by ratios, e.g.

$$
R_{G}^{(A)}\left(x, Q^{2}\right)=G_{A}\left(x, Q^{2}\right) / G_{p}\left(x, Q^{2}\right)
$$

worth knowing in the shadowing region, i.e. $x<10^{-1}$

## Current knowledge

Motivations
Definition
Current knowledge
Inclusive photons
Isolated photons
Outlook

> Reviews: Arneodo, M, Phys Rep 240, 301 (1994) ; Armesto, N, J Phys G 32, R367 (2006)

Extracted from deep inelastic scattering and Drell-Yan data
Several global fits (with DGLAP evolution): Eskola et al (EKS),...
We use recent NLO analysis from de Florian and Sassot (nDS)


## Current knowledge

Motivations
Definition
Current knowledge
Inclusive photons
Isolated photons
Outlook

Reviews: Arneodo, M, Phys Rep 240, 301 (1994) ; Armesto, N, J Phys G 32, R367 (2006)

Extracted from deep inelastic scattering and Drell-Yan data
Several global fits (with DGLAP evolution): Eskola et al (EKS),...
We use recent NLO analysis from de Florian and Sassot (nDS)

$\Rightarrow$ gluon practically unconstrained

## Prompt photon production at large $p_{T}$

$$
\begin{array}{lll}
\begin{array}{l}
\text { Inclusive photons } \\
\text { Prompt photon } \\
\text { Nuclear ratios }
\end{array} & d \sigma(p+p \rightarrow \gamma+X) \stackrel{\text { LO }}{=} & u_{1} * \bar{u}_{2} * d \hat{\sigma}(u+\bar{u} \rightarrow \gamma+g)+ \\
y=0 & & u_{1} * G_{2} * d \hat{\sigma}(u+g \rightarrow \gamma+u)+\cdots+ \\
y=3
\end{array} \quad \begin{array}{ll} 
& u_{1} * G_{2} * D_{u}^{\gamma} * d \hat{\sigma}(u+g \rightarrow u+g)+\cdots
\end{array}
$$

## Prompt photon production at large $p_{T}$

| Inclusive photons | $d \sigma(p+p \rightarrow \gamma+X) \quad$ LO |  |
| :---: | :---: | :---: |
| Prompt photon |  | $u_{1} * \bar{u}_{2} * d \hat{\sigma}(u+\bar{u} \rightarrow \gamma+g)+$ |
| Nuclear ratios |  | $u_{1} * G_{2} * d \hat{\sigma}(u+g \rightarrow \gamma+u)+$ |
| $y=0$ |  | $u_{1} * G_{2} * d \hat{\sigma}(u+g \rightarrow \gamma+u)$ |
| $y=3$ |  | $u_{1} * G_{2} * D_{u}^{\gamma} * d \hat{\sigma}(u+g \rightarrow u+g)+$ |
| Isolated photons | direct |  |
| Outlook |  | fragmentation |

## Prompt photon production at large $p_{T}$

Inclusive photons
Prompt photon
Nuclear ratios
$y=0$
$y=3$
Isolated photons
Outlook $\frac{d^{3} \sigma}{d y d^{2} p_{T}}(p+p \rightarrow \gamma+X) \operatorname{vs} s, p_{T}, y$

- measured at several energies
- with various projectiles
- collider data well described by pQCD at NLO


## Nuclear ratios

Inclusive photons
Prompt photon
Nuclear ratios
$y=0$
$y=3$
Isolated photons
Outlook

$$
R_{p A}=\frac{d \sigma(p+A \rightarrow \gamma+X)}{d \sigma(p+p \rightarrow \gamma+X} \text { vs } x_{T}, y, s
$$

- studied with INCNLO
[Aurenche et al, Eur Phys J 9, 107 (1999)]
- putting either $f_{p}$ or $f_{A}$
- $\sqrt{s}=8.8 \mathrm{TeV}, x_{T}=p_{T} /(\sqrt{s} / 2)$
- plotted versus $x_{T} e^{-y}$, $\sim x_{2}$ region probed
$\rightarrow$ sensitive to modification of parton densities. . .
$\rightarrow$... and to change of isospin composition


## Inclusive photons at $y=0$

## Inclusive photons at $y=3$

## Isolated photons

■ Cut out the $\pi^{0}$ background. . .

- . . and the fragmentation component
- Nuclear ratio computed with JETPHOX [Aurenche et al, Phys Rev D 73, 094007 (2006)]
- isolation criterion: $E_{T}^{\text {had }} / p_{T}^{\gamma} \leq 0.1$ in a cone of radius $R=0.4$ around the photon
$\rightarrow$ direct extraction of shadowing ratios


## Isolated photons

- Cut out the $\pi^{0}$ background. . .
- . . and the fragmentation component
- Nuclear ratio computed with JETPHOX [Aurenche et al, Phys Rev D 73, 094007 (2006)]
- isolation criterion: $E_{T}^{\text {had }} / p_{T}^{\gamma} \leq 0.1$ in a cone of radius $R=0.4$ around the photon
$\rightarrow$ direct extraction of shadowing ratios
- in $d \sigma=f_{1} * f_{2} * d \hat{\sigma}$ the $x$ region is selected by the behavior of the parton densities
- ratios such as $R_{G}=G_{A} / G_{p}$ show much less variation
$\rightarrow$ factorize them out of the convolution


## Direct extraction of $f_{A} / f_{p}$

Inclusive photons
Isolated photons
Isolated photons Direct extraction $y=0$

Outlook

Which $x$ ? At LO, the Compton cross section is

$$
\begin{gathered}
\frac{d^{3} \sigma}{d y d^{2} p_{T}} \propto \int d v F^{(1)}\left(\frac{x_{T} e^{y}}{2 v}\right) G^{(2)}\left(\frac{x_{T} e^{-y}}{2(1-v)}\right)\left(1-v+\frac{1}{1-v}\right) \\
+G^{(1)}\left(\frac{x_{T} e^{y}}{2 v}\right) F^{(2)}\left(\frac{x_{T} e^{-y}}{2(1-v)}\right)\left(v+\frac{1}{v}\right),
\end{gathered}
$$

At small $x_{T}$ (and not-too-large |y|)

$$
\begin{aligned}
& \text { - } F(x) \sim A x^{-a} \text { and } G(x) \sim B x^{-b} \rightarrow F \times G \propto v^{a}(1-v)^{b} \\
& \rightarrow R \rightarrow R\left(x_{T} e^{-y}\right)
\end{aligned}
$$

$\square$ at $y=0$, the nuclear ratio is $\approx 0.5\left(R_{G}+R_{F_{2}}\right)$
■ at $y=3$, it is $\approx R_{G}$

## Isolated photons at $y=0$

Motivations
Inclusive photons
Isolated photons
Isolated photons
Direct extraction
$y=0$
Outlook


## Isolated photons at $y=0$

Motivations
Inclusive photons
Isolated photons
Isolated photons
Direct extraction
$y=0$
Outlook


- Nuclear modifications up to 30\%


## $\Rightarrow$ challenging measurements

- same energy for $p p$ and $p A$ or effect of extrapolation
- photon channel to be compared with
$\diamond$ jet production
$\diamond$ low-mass dilepton
$\diamond$ open charm and beauty

