Prompt photon production in p-A collisions at the LHC and the extraction of gluon shadowing

Thierry Gousset (SubaTech, Nantes, France)

in collaboration with François Arleo (CERN and LAPTH)

April 18, 2007

Definition

Motivations

Definition

Current knowledge

Inclusive photons

Isolated photons

Outlook

Leading twist modification of per-nucleon parton densities

$$u_p(x, Q^2) \rightarrow u_A(x, Q^2),$$

 $G_p(x, Q^2) \rightarrow G_A(x, Q^2), \dots$

also described by ratios, e.g.

$$R_G^{(A)}(x,Q^2) = G_A(x,Q^2)/G_p(x,Q^2)$$

worth knowing in the shadowing region, i.e. $x < 10^{-1}$

Current knowledge

Motivations

Definition

Current knowledge

Inclusive photons

Isolated photons

Outlook

Reviews: Arneodo, M, Phys Rep 240, 301 (1994); Armesto, N, J Phys G 32, R367 (2006)

Extracted from deep inelastic scattering and Drell-Yan data

Several global fits (with DGLAP evolution): Eskola *et al* (EKS),...

We use recent **NLO** analysis from de Florian and Sassot (nDS)

Current knowledge

Motivations

Definition

Current knowledge

Inclusive photons

Isolated photons

Outlook

Reviews: Arneodo, M, Phys Rep 240, 301 (1994); Armesto, N, J Phys G 32, R367 (2006)

Extracted from deep inelastic scattering and Drell-Yan data

Several global fits (with DGLAP evolution): Eskola *et al* (EKS),...

We use recent **NLO** analysis from de Florian and Sassot (nDS)

⇒ gluon practically unconstrained

Prompt photon production at large p_T

Motivations

Inclusive photons

Prompt photon

Nuclear ratios

$$y = 0$$

$$y = 3$$

Isolated photons

$$d\sigma(p+p\to\gamma+X) \stackrel{\text{LO}}{=} u_1 * \bar{u}_2 * d\hat{\sigma}(u+\bar{u}\to\gamma+g) + u_1 * G_2 * d\hat{\sigma}(u+g\to\gamma+u) + \cdots + u_1 * G_2 * D_u^{\gamma} * d\hat{\sigma}(u+g\to u+g) + \cdots$$

Prompt photon production at large p_T

w	otiv	/ati	α r	١c
w	Oliv	/au	UΙ	10

Inclusive photons

Prompt photon

Nuclear ratios

$$y = 0$$

$$y = 3$$

Isolated photons

Outlook

$$d\sigma(p+p\to\gamma+X) \stackrel{\text{LO}}{=}$$

direct

$$u_1 * \bar{u}_2 * d\hat{\sigma}(u + \bar{u} \to \gamma + g) +$$

 $u_1 * G_2 * d\hat{\sigma}(u + g \to \gamma + u) + \cdots +$
 $u_1 * G_2 * D_u^{\gamma} * d\hat{\sigma}(u + g \to u + g) + \cdots$

fragmentation

Prompt photon production at large p_T

Motivations

Inclusive photons

Prompt photon

Nuclear ratios

$$y = 0$$

$$y = 3$$

Isolated photons

$$d\sigma(p+p\to\gamma+X) \stackrel{\text{LO}}{=} u_1 * \bar{u}_2 * d\hat{\sigma}(u+\bar{u}\to\gamma+g) + u_1 * G_2 * d\hat{\sigma}(u+g\to\gamma+u) + \cdots + u_1 * G_2 * D_u^{\gamma} * d\hat{\sigma}(u+g\to u+g) + \cdots$$

$$\frac{d^3\sigma}{dyd^2p_T}(p+p\to\gamma+X) \text{ vs } s, p_T, y$$

- measured at several energies
- with various projectiles
- collider data well described by pQCD at NLO

Nuclear ratios

Motivations

Inclusive photons

Prompt photon

Nuclear ratios

y = 0y = 3

Isolated photons

Outlook

$$R_{pA} = \frac{d\sigma(p+A \to \gamma + X)}{d\sigma(p+p \to \gamma + X)} \text{ vs } x_T, y, s$$

studied with INCNLO

[Aurenche et al, Eur Phys J 9, 107 (1999)]

- \blacksquare putting either f_p or f_A
- $\sqrt{s} = 8.8$ TeV, $x_T = p_T/(\sqrt{s}/2)$
- plotted versus $x_T e^{-y}$, $\sim x_2$ region probed
- → sensitive to modification of parton densities...
- → ... and to change of isospin composition

Inclusive photons at y = 0

Motivations

Inclusive photons

Prompt photon

Nuclear ratios

y = 0

y = 3

Isolated photons

Inclusive photons at y = 3

Motivations

Inclusive photons

Prompt photon

Nuclear ratios

y = 0

y = 3

Isolated photons

Isolated photons

Motivations

Inclusive photons

Isolated photons

Isolated photons

Direct extraction

y = 0

- \blacksquare Cut out the π^0 background...
- ... and the fragmentation component
- Nuclear ratio computed with JETPHOX [Aurenche *et al*, Phys Rev D 73, 094007 (2006)]
- \blacksquare isolation criterion: $E_T^{\rm had}/p_T^{\gamma} \leq 0.1$ in a cone of radius R=0.4 around the photon
- → direct extraction of shadowing ratios

Isolated photons

Motivations

Inclusive photons

Isolated photons

Isolated photons

Direct extraction

y = 0

- \blacksquare Cut out the π^0 background...
- ... and the fragmentation component
- Nuclear ratio computed with JETPHOX
 [Aurenche et al, Phys Rev D 73, 094007 (2006)]
- \blacksquare isolation criterion: $E_T^{\rm had}/p_T^{\gamma} \leq 0.1$ in a cone of radius R=0.4 around the photon
- → direct extraction of shadowing ratios
- in $d\sigma = f_1 * f_2 * d\hat{\sigma}$ the x region is selected by the behavior of the parton densities
- lacktriangle ratios such as $R_G = G_A/G_p$ show much less variation
- → factorize them out of the convolution

Direct extraction of f_A/f_p

Motivations

Inclusive photons

Isolated photons
Isolated photons
Direct extraction y = 0

Outlook

Which x? At LO, the Compton cross section is

$$\frac{d^3\sigma}{dyd^2p_T} \propto \int dv \ F^{(1)} \left(\frac{x_T e^y}{2v}\right) G^{(2)} \left(\frac{x_T e^{-y}}{2(1-v)}\right) \left(1-v+\frac{1}{1-v}\right)
+G^{(1)} \left(\frac{x_T e^y}{2v}\right) F^{(2)} \left(\frac{x_T e^{-y}}{2(1-v)}\right) \left(v+\frac{1}{v}\right),$$

At small x_T (and not-too-large |y|)

$$\blacksquare F(x) \sim Ax^{-a} \text{ and } G(x) \sim Bx^{-b} \rightarrow F \times G \propto v^a (1-v)^b$$

$$\rightarrow R \rightarrow R(x_T e^{-y})$$

- \blacksquare at y=0, the nuclear ratio is $\approx 0.5(R_G+R_{F_2})$
- \blacksquare at y=3, it is $\approx R_G$

Isolated photons at y = 0

Motivations

Inclusive photons

Isolated photons

Isolated photons

Direct extraction

y = 0

Isolated photons at y = 0

Motivations

Inclusive photons

Isolated photons

Isolated photons

Direct extraction

y = 0

Motivations

Inclusive photons

Isolated photons

- Nuclear modifications up to 30%
- ⇒ challenging measurements
 - \blacksquare same energy for pp and pA or effect of extrapolation
 - photon channel to be compared with
 - jet production
 - low-mass dilepton
 - open charm and beauty