Multi-particle decays of light mesons measured at RHIC by PHENIX

Alexander Milov
BRDOKHRNEN
NATIONAL LABORATORY

for the PHENIX Collaboration

Outline

* What do we learn from ω, η \& K
* Analysis:
\checkmark PHENIX detector
\checkmark Acceptance
\checkmark Trigger efficiency
\checkmark Raw data
* Results:
\checkmark Spectra
\checkmark Cross-checks
\checkmark Particle Ratios
\checkmark Nuclear modification factors $\boldsymbol{R}_{\mathrm{AB}}$
* Summary

Motivation

What can we learn from high p_{T} spectra of $\omega, \eta \& K$

* In p+p
\checkmark Parton distribution function of the proton.
\checkmark Fragmentation functions
\checkmark Test of pQCD
\checkmark Strangeness content of the event (K)
\checkmark Vector-to-pseudoscalar particle ratio (ω)
\% In Heavy lons collisions:
\checkmark Nuclear modification factors
\checkmark An insight at the Chiral Symmetry Restoration (ω)

PHENIX Experiment

BBC (vertex)
BBC (trigger)
$\mathrm{dz}=0.5 \mathrm{~cm} . .2 \mathrm{~cm}$
$\varepsilon=50 \% \ldots 92 \%$
DC/PC1 (tracking) $\mathrm{dp}_{\mathrm{T}} / \mathrm{p}_{\mathrm{T}} \sim 1.0 \%{ }^{\bullet} \mathrm{p}_{\mathrm{T}}+\mathbf{0 . 7 \%}$ EMC (calorimetric) dE/E $\sim \mathbf{8 . 1 \%} / \sqrt{ } \mathrm{E}+\mathbf{3 . 0 \%}$ EMC (t.o.f.) dT ~ $\mathbf{5 0 0} \mathbf{n s}$

EMC (γ-trigger) $\quad 0.4 \mathrm{GeV} \ldots 2.5 \mathrm{GeV}$
PC3 (matching) $\quad 2-4 \mathrm{~mm}$

PHENIX acceptance :
$-0.35<\eta<0.35$
$2 \times 90^{\circ}$ for two arms

ω	$\rightarrow \pi^{0} \gamma$	$\mathrm{BR}=8.90 \pm 0.25 \%$
ω	$\rightarrow \pi^{0} \pi^{+} \pi^{-}$	$\mathrm{BR}=89.1 \pm 0.7 \%$
η	$\rightarrow \pi^{0} \pi^{+} \pi^{-}$	$\mathrm{BR}=22.6 \pm 0.4 \%$
$\mathrm{~K}_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0}$	$\mathrm{BR}=31.1 \pm 0.2 \%$	
$\eta_{\mathrm{K}} \rightarrow \gamma \gamma$	$\mathrm{BR}=39.4 \pm 0.3 \%$	
$\mathrm{~K}^{ \pm}{ }_{s} \rightarrow \pi^{+} \pi^{-}$	using ToF	
	$\mathrm{BR}=69.0 \pm 0.2 \%$	

PHENIX Experiment

BBC (vertex)
BBC (trigger)
DC/PC1 (tracking) $\mathrm{dp}_{\mathrm{T}} / \mathrm{p}_{\mathrm{T}} \sim \mathbf{1 . 0 \%}{ }^{\bullet} \mathrm{p}_{\mathrm{T}}+\mathbf{0 . 7 \%}$ EMC (calorimetric) dE/E $\sim \mathbf{8 . 1} \% / \sqrt{ } \mathrm{E}+\mathbf{3 . 0 \%}$ EMC (t.o.f.) dT ~ 500 ns EMC (γ-trigger) $\quad 0.4 \mathrm{GeV} . . .2 .5 \mathrm{GeV}$
PC3 (matching) $\quad 2-4 \mathrm{~mm}$

PHENIX acceptance :
$-0.35<\eta<0.35$
$2 \times 90^{\circ}$ for two arms

$\omega \quad \rightarrow \pi^{0} \gamma$	$B R=8.90 \pm 0.25 \%$
$\omega \rightarrow \pi^{0} \pi^{+} \pi^{-}$	$B R=89.1 \pm 0.7 \%$
$\eta \rightarrow \pi^{0} \pi^{+} \pi^{-}$	$B R=22.6 \pm 0.4 \%$
$\mathbf{K}_{\mathbf{S}} \rightarrow \pi^{0} \pi^{0}$	$B R=31.1 \pm 0.2 \%$
$\eta \quad \rightarrow \gamma \gamma$	$B R=39.4 \pm 0.3 \%$
$\mathrm{K}^{ \pm}$	using ToF
$\mathbf{K}_{\mathbf{S}} \rightarrow \pi^{+} \pi^{-}$	$B R=69.0 \pm 0.2 \%$

Alexander Milov
DIS07 Munich Germany
Apr,19 2007

PHENIX Experiment

BBC (vertex)
BBC (trigger)
DC/PC1 (tracking) $\mathrm{dp}_{\mathrm{T}} / \mathrm{p}_{\mathrm{T}} \sim \mathbf{1 . 0 \%}{ }^{\circ} \mathrm{p}_{\mathrm{T}}+\mathbf{0 . 7 \%}$
EMC (calorimetric) dE/E $\sim \mathbf{8 . 1 \%} / \sqrt{ } \mathrm{E}+\mathbf{3 . 0 \%}$
EMC (t.o.f.) dt ~ $\mathbf{5 0 0} \mathbf{n s}$
EMC (γ-trigger) $\quad 0.4 \mathrm{GeV} \ldots 2.5 \mathrm{GeV}$
PC3 (matching) $\quad 2-4 \mathrm{~mm}$

West
East

PHENIX acceptance :
$-0.35<\eta<0.35$
$2 \times 90^{\circ}$ for two arms

$\omega \rightarrow \pi^{0} \gamma$	$\mathrm{BR}=8.90 \pm 0.25 \%$
$\omega \rightarrow \pi^{0} \pi^{+} \pi^{-}$	$\mathrm{BR}=89.1 \pm 0.7 \%$
$\eta \rightarrow \pi^{0} \pi^{+} \pi^{-}$	$\mathrm{BR}=22.6 \pm 0.4 \%$
$\mathrm{~K}_{\mathrm{S}}^{0} \rightarrow \pi^{0} \pi^{0}$	$\mathrm{BR}=31.1 \pm 0.2 \%$
$\eta \rightarrow \gamma \gamma$	$\mathrm{BR}=39.4 \pm 0.3 \%$
$\mathrm{~K}^{ \pm}$	using ToF
$\mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}$	$\mathrm{BR}=69.0 \pm 0.2 \%$

Phase space density

Taking phase space into account is absolutely crucial to get the results right. In PHENIX acceptance difference can reach 40\%

Gamma trigger efficiency

Gamma-trigger efficiency must be worked out very precisely.

Because of the multi-particle final state even very high p_{T} of are affected by the efficiency rising region.

Comparison to Minimum Bias trigger sample is very important.

PRC75 (2007) 024909
$\eta \rightarrow \pi^{0} \pi^{+} \pi^{-}$
$\omega \rightarrow \pi^{0} \pi^{+} \pi^{-}$
$K_{S}^{0} \rightarrow \pi^{0} \pi^{0}$

Efficiencies are very different for all decay modes, but certain similarities can be seen.
$\eta, \omega \rightarrow \pi^{0} \pi^{+} \pi^{-}$
$\omega \rightarrow \pi^{0} \gamma$
$\mathrm{K}_{\mathrm{S}}{ } \rightarrow \pi^{0} \pi^{0}$

PHENIX has first measurement of ω in $p+p, d+A u \& A u+A u$ and measurement of $K_{S}{ }_{S}$ at high p_{T} in $p+p$ and $d+A u$

w - meson spectra

PHENIX mapped out high $p_{T} \omega$ in $p+p, d+A u \&$ produced a first result in Au+Au $\mathrm{K}_{\mathrm{s}}{ }_{\mathrm{S}}$ is measured in $p+p$ and $d+A u$

Result consistency checks

Similar analysis

Result consistency checks

Similar analysis
Similar analysis

$\eta, K / \pi^{0}$ ratio

$$
\eta \rightarrow 2 \gamma
$$

ω / π^{0} ratio

$\omega \rightarrow \pi^{0} \pi^{+} \pi^{-} \omega \rightarrow \pi^{0} \gamma$

ω / π^{0} in $p+p$ Run3 @ $\sqrt{ } s=200 \mathrm{GeV}=0.85 \pm 0.05$ (stat) ± 0.09 (syst) \leftarrow nucl-ex/0611031 (PRC)
ω / π^{0} in $p+p$ Run5 @ $\sqrt{ } s=200 \mathrm{GeV}=0.81 \pm 0.02($ stat $) \pm 0.07$ (syst) \leftarrow nucl-ex/0702046 (QM) ω / π^{0} in $d+A u$ Run3 @ $\sqrt{ } s_{\text {NN }}=200 \mathrm{GeV}=0.94 \pm 0.08$ (stat) ± 0.12 (syst) \leftarrow nucl-ex/0611031 (PRC)
PH ENIX Alexander Milov
DIS07 Munich Germany
Apr,19 2007

Nuclear Modification

Factor

$$
\mathrm{R}_{\mathrm{A}+\mathrm{A}}=\frac{\mathrm{dN} \mathrm{~N}^{\mathrm{A}+\mathrm{A} / \mathrm{dp}_{\mathrm{T}}}}{\left\langle\mathrm{~N}_{\text {coll }}>\mathrm{dN}^{\mathrm{p}+\mathrm{p}} / \mathrm{dp}_{\mathrm{T}}\right.}
$$

R_{dA} for all light mesons are around 1
$R_{A A}$ for ω at high p_{T} is <1, same as other mesons
PH ENIX Alexander Milov
DIS07 Munich Germany

\& PHENIX measured ω, η \& K_{0} production in hadronic channels, providing pioneering and robust measurement for ω and K.

* All mesons behave consistently with other mesons in different collision systems at different energies.
* The baseline measurements ($p+p \sqrt{ } \mathbf{s}=200 \mathrm{GeV}$) exist in hadronic channels and are being analyzed in leptonic channel using accumulated data.
* Current analysis is in progress and needs improvement on the background conditions and more data.
* In future we plan to finalize $\boldsymbol{\omega}$ data, reduce K_{s} systematic errors to address $\pi / K / p$ separation. The multi-particle approach can reveal more information than is currently analyzed.
- Universtiy of कato Paulo, 3ag Pabig, Brazil

Academla Sinlca, Talpel 11529 , China

- Ohina Instituto of Atomic Enorgy (OlAET, Deijing, P, R, China

Pekiny University, Beijing, P, R. China

- Chanfer Uiriversify, Faculty of Mathermatice ainl Pirypicr, Ker Kanferu 3, 12.110 Ftague, Gresti Rwpublis
* Czech Technical University, Facuity of Nuclear Sclences andiPhysical Engirievring, Brehova 7,11519 Prague, Ozech Republic
* Instituse of Physics. Acagemy of sciences of the Gzecn repupilc, Na Slovance z, 1oz, z1 Fragoe, Czecn кepudic
* Laboratote de Rnysique 0orpusculaire flefy universite de crermontFerrand, 63 T7p Ruphere, Qermant-Ferranc, Erance
- Dapmia, UEA Saclay, Bat, $700,5 \cdot 91191$ Git-sur-Yvette, France
* IPN-Orsay Unlvorsite Parls 3ug. ONRSAN2P3, BPT, F-91406 Orsay, Era
- Laboratolte Leprince*Finguet, Ecole Fqiytecinnique. GNRSviN2P3, RMut Sactay, F-9112z Fataiseau, France
- SUBATECH, Ecole clos Mmes atNamtes, F-44367 Nantos France

University of Muenster, Muenster, Germany

* KFKI Research Institute for Particle and Nuclear Physics at the Hurngari Academy of Scionces (MTA KFKI RMKi), Budapest, Hungary
Debrecen University, Debrecen, Hungary
- EÖxös Lorand University (EETE) Budapest, Hungary
* Banaras Hindu Univprsity, Bianaras; Inclia
- Bhabha Atornic Fesearch Centre (BARO), Bombay India
- Weizmann instituto, Rohovot, 76100 , Israol
- Cenfer far Nuclear Study (CNS-Tokyo) Univeraity of Tokyp, Tanashis, Tokyo 188, Japan
- Hiroshima Universiky, Higashi-Hiroshima 739, Japan

3 * KEK = High Energy Ageelerator Research Organization; 1-i Ohe; Tsukuba Ibaraki 305-0801, Japan

- Kyoto Unizorsity, Kyoto. Japarn
- Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan
- RIKEN. The Institete of Physical and Chemical Research, Wako. Saitamal 351. 0198 , Japan
RIKEN - ENL Research Center, Japan. tocated at BNL
- RIKEN - ENL Research center, Japan. tocated at ENL
- Physics Departmont Rikkyo Univorsity, $3-34=1$ Nishi-ikobekurg. Toshima, Tokya $171-8501$. Japan
- Tokyo Iristitute of Technology, Oh-okayarra, Meguro, Tokyo 152-8551, Japan
- University of Tsukulaa $1=1=1$ Tunnodai. Tsukubarshi ibaraki=kon $305-9577_{2}$. Inझनп
- Maseda Univorsity, Tokyo, Japarn
- eyctotron Application Laboratory, KAERI, Seoul, South Koroa
- Kangriman Niptionmal IVrivprsity. Kangruag 24@-702. South Knmaz

- Myenng Ji Hinivarsity, Yongin City 449-728, Korma
- System Elpetromirs Labpratory, Seromi National Inivarsity, sponl sumth Kores
- Yanqell Hnivarsity, firanil 12p-749, Karag
- IHEP (Protvino), State Researeh Centpp of Russian Fecieration. "Institute for High Energy Pbysics", Protvino 142284, Russia
- Jpint Institute for Nucipar Rezqarch (JINR-Dubna), Dubnan, Ruseria
- Hurchatov Insetitute, Moscow, Ruspia
- PNP1, Pptereburg Nuçlear Physics Instituto, Qatehina, Lenimgrad region, 4essoo, Ruseita
- Skoboltsyn Institnite of Nuctear Physios, Lompnosov Moscow Stato Unikprsity, Voroblevy Qory, Mospow 1,1999 ,, Rupsia
- Eaint-Peteroburg Efate Polyteohrioal Univiversity, Politeohinithephayastr, 20, Et, Petersburg 495251 , Russia

My research is supported by the Goldhaber Fellowship at BNL with funds provided by Brookhaven Science Associates.

ω measurements show no evidence of mass modification at high \mathbf{p}_{T}

Backgrounds:

Mixed event technique takes care only of uncorrelated combinatorial background.

Correlated background can be explained, but cannot be efficiently eliminated.

We rely on fitting to get the results.

Result consistency checks

Similar analysis
Similar analysis

In spite of difficulties of the new approach the method is robust and the results are consistent.

$\omega \rightarrow \pi^{0} \gamma$ invariant mass spectra e+p

$\omega \rightarrow \pi^{0} \gamma \mathrm{e}+\mathrm{p} \mathrm{E}_{\mathrm{e}}=2.8 \mathrm{GeV}$

$\omega \rightarrow \pi^{0} \gamma p+p \sqrt{ } s=200 \mathrm{GeV}$
M. Lutz Nucl. Phys. A706 431 (2002)

Peaks at low masses in the channel may be in part, explained by correlated background from eta, pi0 Ks ...

