

Recent heavy flavor results from STAR

André Mischke for the STAR Collaboration

15th international workshops on Deep-Inelastic Scattering and Related Subjects, Munich, Germany, 16-20 April 2007

Outline

- Introduction: The Heavy-ion program
- The STAR experiment at RHIC
- Heavy flavor (charm and bottom) production and in-medium energy loss
- A selection of current results
 - Charm cross-section
 - Energy loss measurements using non-photonic electrons from semi-leptonic heavy flavor decays
 - Disentangle charm and bottom via electron hadron / D⁰ correlations
 - Quarkonia (Υ)
 - First results on D_s⁺
- Summary and conclusions

Matter in extremes: the QGP

QCD phase diagram of nuclear matter

Baryon density

High energy heavy-ion collision

- Study strongly interacting matter under extreme conditions
- Lattice QCD predicts a phase transition from hadronic matter to a deconfined state, the Quark-Gluon Plasma
- At RHIC energies: Partons are expected to loose energy in the hot and dense QCD matter

The RHIC accelerator at BNL

STAR detector

- Au+Au, $\sqrt{s_{NN}}$ = 19.6, 62.4, 130, 200 GeV
- Cu+Cu, $\sqrt{s_{NN}} = 200 \text{ GeV}$
- d+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$
- polarized p+p, \sqrt{s} = 200 GeV

Relativistic heavy-ion collider facility

Two concentric rings, 3.8 km circumference, counter-rotating ion beams, 6 collisions points

The STAR detector

TAR Exciting results from light quarks

- Strong high-p_⊤ particle suppression in central Au+Au
- → Parton energy loss in created medium
- → Strong evidence for a dense, opaque, non-viscous state of matter (perfect liquid)

STAR results from the first three years, Nucl. Phys. A757, 102 (2005)

What are the in-medium effects for heavy quarks?

In-medium energy loss of heavy quarks

- Due to their large mass heavy quarks are primarily produced by gluon fusion
- \rightarrow production rates can be calculated by pQCD
- → sensitivity to initial state gluon distribution *M. Gyulassy and Z. Lin, PRC 51, 2177 (1995)*
- Heavy quarks loose less energy due to suppression of small angle gluon radiation (dead-cone effect) Dokshitzer and Kharzeev, PLB 519, 199 (2001)
- Amount of collisional and radiative energy losses seems to be similar M.G. Mustafa, PRC72, 014905 and A.K. Dutt-Mazumder et al., PRD71, 094016 (2005)

Heavy flavour measurements in STAR

Hadronic decay channels

```
D^0 \rightarrow K\pi
                                                       (B.R.: 3.83%)
D^* \rightarrow D^0 \pi, D^{\pm} \rightarrow K \pi \pi
```

- → Direct clean probe (signal in invariant mass distribution)
- → Difficulty: large combinatoric background (especially in high multiplicity environments)
- → Event-mixing and/or vertex tracker needed to obtain signal
- Semi-leptonic channels (incl. modes)

```
c \rightarrow \ell^+ + anything (B.R.: 9.6%)
                                                                  ℓ = e or u
      D^0 \rightarrow \ell^+ + \text{anything} (B.R.: 6.87%)
      D^{\pm} \rightarrow \ell^{\pm} + anything (B.R.: 17.2%)
b \rightarrow \ell^- + anything (B.R.: 10.9%)
      B^{\pm} \rightarrow \ell^{\pm} + \text{anything} (B.R.: 10.2%)
```

- → Single (non-photonic) electrons sensitive to charm and bottom
- → Robust electron trigger

Electron identification - ToF

- ToF patch (prototype)
 - $\Delta \phi \approx \pi/30$
 - $-0 > \eta > -1$
- Electron ID
 - $-|1/\beta-1| < 0.03$
 - TPC dE/dx
- Momentum range:
 - $-p_T < 4 \text{ GeV/c}$

Muon identification - ToF

- Low-p_T (p_T < 0.25 GeV/c) muons can be measured with TPC + ToF
- Separate different muon contributions using MC simulations:
 - K and π decay
 - charm decay
 - DCA (distance of closest approach) distribution is very different

TAR

PAR Open charm reconstruction - TPC

- Hadronic decay channel:
- $D^0 \to K + \pi (B.R. 3.8\%)$
 - PID in TPC using dE/dx
 - limited to a certain p range
- No reconstruction of displaced vertex up to now
- Background description using mixed event technique (details in PRC 71, 064902 (2005))

Andre Mischke (UU)

DIS 2007 – Munich – 4/1//200/

Charm cross section

 $\sigma^{NN}_{cc} = 1.40 \pm 0.11 \pm 0.39 \text{ mb}$ in 0-12% central Au+Au

- D⁰, e[±], and µ[±] combined fit covering ~95% of cross section
- $\sigma^{\text{NN}}_{\text{cc}}$ higher than NLO calculations
- dσ^{NN}_{cc}/dy follows binary collision scaling (N_{bin}) → charm production from initial state, as expected
- Publication in preparation pp and d+Au results already published in PRL 94, DIS 20 062301 (2005)

Electron identification - EMC

Advantage: triggering to enrich highp_T particle sample

1. TPC: dE/dx for $p_T > 1.5$ GeV/c

- Only primary tracks (reduces effective radiation length)
- Electrons can be discriminated well from hadrons up to 8 GeV/c
- Allows to determine the remaining hadron contamination after EMC

2. EMC:

- a) Tower E & p/E
- b) Shower Max Detector (SMD)
 - Hadrons/Electron shower develop different shape
 - Use # hits in Shower Max to discriminate
- 85-90% purity of electrons (p_T dependent)
- hadron discrimination power ~10³-10⁴

Photonic background

- Measured electrons have a photonic and non-photonic contribution
- Photonic contribution from gamma conversions and (π^0, η) Dalitz decays
- Procedure
 - electron candidates are combined with TPC tracks which passed loose dE/dx cuts around electron band
 - invariant mass is calculated at dca of TPC tracks: $m_{inv}^2 = 2E_1E_2(1-\cos\Theta)$
- Electrons with low invariant mass $(m_{inv} < 0.15 \text{ GeV/c}^2)$ are rejected
- Correct for background rejection efficiency for non-reconstructed conversions

Non-photonic electron spectra

- FONLL calculation factor of about 5 lower
- Spectra shape well described
- Publication: Phys. Rev. Lett. in press (nucl-ex/0607012)

Nuclear modification factor R_{AA}

Nuclear modification factor:

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$
where $T_{AA} = N_{Coll} / \sigma_{inelast}^{NN}$

- Non-photonic electrons at high- p_T are suppressed to the same extent as light quark hadrons in Au+Au
- Not expected due to dead-cone effect

Comparisons to models

Describing the suppression is difficult for models

- Radiative energy loss with typical gluon densities is not enough Djordjevic et al., PLB 632 (2006) 81
- Models involving a very opaque medium agree better Armesto et al., PLB 637 (2006) 362
- Collisional energy loss / resonant elastic scattering Wicks et al., nucl-th/0512076 and van Hees and Rapp, PRC 73 (2006) 034913
- Heavy quark fragmentation and dissociation in the medium → strong suppression for charm and bottom Adil and Vitev, hep-ph/0611109

Disentangle charm and bottom: first approach

- Different fragmentation of associated jets
- Study non-photonic electron-hadron azimuthal correlations in p+p
- B much heavier than D mesons
- → sub-leading electrons get larger kick from B (decay kinematics)
- → near-side e-h correlation is broadened
- Extract relative bottom contribution using PYTHIA simulations:

$$\Delta \phi_{measured} = R \cdot \Delta \phi_{B} + (1 - R) \cdot \Delta \phi_{D}$$

B contribution to np-electrons

- Non-zero bottom contribution
- Flavour contribution consistent with FONLL
- Caveats
 - subtraction of (large) background
 - model dependent (PYTHIA)
 - photonic background rejection efficiency under study
- Results need to be confirmed by direct D/B meson measurements
- \rightarrow STAR detector upgrade: Heavy flavor tracker (vertex resolution σ ≤ 50 μm)

Heavy flavor tagged correlations

- Advantage: STAR has large acceptance (|η| < 1 and full azimuth)
- Underlying production mechanism can be identified using second charm/bottom particle
- Experimental approach
 - non-photonic electrons from semileptonic c/b decays are used to trigger on c-cbar or b-bbar pairs
 - associate D⁰ mesons are reconstructed via their hadronic decay channel (probe)

Electron-D⁰ azimuthal correlations

- Clear D⁰ signal
 - S/B ratio factor ~100 better
 than signal w/o electron trigger
- Near- and away-side correlation peak with similar yields observed
- → Evidence for heavy flavor correlations
- Next: Separate charm and bottom contribution as well as sub-processes (e.g. gluon splitting) using
 - dedicated simulations
 - charge-sign requirement on (e, D⁰) pairs

Quarkonia in STAR

- <u>Prediction:</u> Melting of Quarkonia states in QGP phase
- Color screening between heavy quark pairs, e.g., J/w suppression Matsui and Satz, PLB 178, 416 (1986)

- Large dataset sampled in Run VI
- Measure $\Upsilon(1s+2s+3s) d\sigma/dy$ at y=0
- Peak width consistent with expected mass resolution

Mid-rapidity $\Upsilon(1s+2s+3s)$ cross-section

- Integrated yield at mid-rapidity: |y|<0.5
- $\Upsilon(1s+2s+3s) \rightarrow e^+e^-$:

$$BR_{ee} \times d\sigma/dy = 91 \pm 28(stat.) \pm 22(sys.) pb$$

- Consistent with NLO pQCD calculations and world data trend
- Next: Au+Au measurement in RHIC Run VII

First D_s⁺ signal at RHIC

- Recent analysis in d+Au 200 GeV
- Decay channels (B.R.: 3.6%):

$$D_s^+ \rightarrow \phi + \pi^+ \rightarrow K^+ + K^- + \pi^+$$

$$D_s^- \rightarrow \phi + \pi^-$$

Rotated event technique

Summary and conclusions

- Charm production cross-section
 - is larger than expected from NLO
 - follows binary collision scaling (no room for thermal production)
- Non-photonic electron spectra
 - electron yield in p+p is ~5 times higher than FONLL
 - energy loss in heavy-ion collision is much larger than expected
- Electron-hadron / D⁰ correlations
 - powerful tool to disentangle charm and bottom
- Quarkonia
 - Y cross-section consistent with pQCD and world data trend
- More exciting results are about to come with the detector upgrades (full barrel ToF and HFT [active pixel sensor technology])

The STAR collaboration

51 institutes from 12 countries, 544 collaborators

Backup

Y cross section and uncertainties

$$BR_{ee} \times \left(\frac{d\sigma}{dy}\right)_{y=0} = \frac{N_{Y}}{dy \times \varepsilon_{Y} \times \int \mathcal{L}dt}$$

$$\int \mathcal{L} dt = (5.6 \pm 0.8) \text{ pb}^{-1}$$

$$\varepsilon_{\Upsilon} = \varepsilon_{\text{geo}} \times \varepsilon_{\text{L0}} \times \varepsilon_{\text{L2}} \times \varepsilon^{2}(e) \times \varepsilon_{\text{mass}}$$

$\epsilon_{ m geo}$	0.263±0.019
$\epsilon_{ ext{L}0}$	0.928±0.049
$arepsilon_{ ext{L2}}$	0.855 ± 0.048
$\epsilon^2(e)$	0.47 ± 0.07
$\epsilon_{ m mass}$	0.96±0.04
ϵ_{Υ}	0.094±0.018

- ε_{geo} : geometrical acceptance
- ε_{L0} : efficiency of L0
- ε_{L2} : efficiency of L2
- ε(e) : efficiency of e reco
- $\varepsilon_{\text{mass}}$: efficiency of mass cut

J/ψ trigger in STAR

- L0 (hardware)
 - □ J/ψ topology trigger: two towers above E_T≈1.2 GeV
 - \Box Separated by 60° in φ
- L2 (software)
 - \square Match EMC high tower to CTB slat \Rightarrow photon rejection
 - ☐ Tower clustering
 - \Box Cut on $m_{ee} = \sqrt{2}E_1E_2(1-\cos\theta)$
 - \Box Cut on $\cos\theta$
- High background contamination ~1.5 GeV/c
- Rejection~100 ⇒ not sampling full luminosity
- Challenging analysis!!!
- Efficiency × acceptance $\approx 12\%$

J/ψ signal in STAR

Slowly getting started with J/ψ :

- Signal in 200 GeV p+p from 2005
 - Tested and working trigger in p+p
 - No trigger for Au+Au until full ToF in 2009
- Also signal in Au+Au with TPC only
 - Large hadron contamination
 - Need full EMC

Open charm measurements - The usual reconstruction technique -

Via hadronic decay channel

$$D^0 \to K^- \pi^+ \quad (B.R.: 3.83\%)$$

- Difficulty: large combinatoric background (especially in high multiplicity environments)
- Event-mixing and/or vertex tracker needed to obtain signal

PRL 94, 062301 (2005)

What is the D⁰ contribution from charm and bottom decays?

PYTHIA (V6.222) simulations CKIN(3) = 20

RHIC performance

Most 200 GeV Au+Au results are from the FY04 run

Side-view STAR experiment

